PLR.wrap {LorenzRegression} | R Documentation |
Wrapper for the Lorenz.SCADFABS
and Lorenz.FABS
functions
Description
PLR.wrap
standardizes the covariates, run the penalized regression and spits out the path of parameter vectors.
Usage
PLR.wrap(
YX_mat,
standardize = TRUE,
weights = NULL,
penalty = c("SCAD", "LASSO"),
h,
eps = 0.005,
...
)
Arguments
YX_mat |
a matrix with the first column corresponding to the response vector, the remaining ones being the explanatory variables. |
standardize |
Should the variables be standardized before the estimation process? Default value is TRUE. |
weights |
vector of sample weights. By default, each observation is given the same weight. |
penalty |
penalty used in the Penalized Lorenz Regression. Possible values are "SCAD" (default) or "LASSO". |
h |
bandwidth of the kernel, determining the smoothness of the approximation of the indicator function. |
eps |
Only used if penalty="SCAD" or penalty="LASSO". Step size in the FABS or SCADFABS algorithm. Default value is 0.005. |
... |
Additional parameters corresponding to arguments passed in |
Value
A list with several components:
lambda
vector gathering the different values of the regularization parameter
theta
matrix where column i provides the normalized estimated parameter vector corresponding to value lambda[i] of the regularization parameter.
LR2
vector where element i provides the Lorenz-
R^2
of the regression related to value lambda[i] of the regularization parameter.Gi.expl
vector where element i provides the estimated explained Gini coefficient related to value lambda[i] of the regularization parameter.
See Also
Examples
data(Data.Incomes)
YX_mat <- Data.Incomes[,-2]
PLR.wrap(YX_mat, h = nrow(Data.Incomes)^(-1/5.5), eps = 0.005)