PLR.BIC {LorenzRegression} | R Documentation |
Determines the regularization parameter (lambda) in a PLR via optimization of an information criterion.
Description
PLR.BIC
takes as input a matrix of estimated parameter vectors, where each row corresponds to a covariate and each column corresponds to a value of lambda,
and returns the index of the optimal column by optimizing an information criterion. By default the BIC is used.
Usage
PLR.BIC(YX_mat, theta, weights = NULL, IC = c("BIC", "AIC"))
Arguments
YX_mat |
A matrix with the first column corresponding to the response vector, the remaining ones being the explanatory variables. |
theta |
matrix gathering the path of estimated parameter vectors. Each row corresponds to a given covariate. Each column corresponds to a given value of lambda |
weights |
vector of sample weights. By default, each observation is given the same weight. |
IC |
indicates which information criterion is used. Possibles values are "BIC" (default) or "AIC". |
Value
A list with two components
val
vector indicating the value attained by the information criterion for each value of lambda.
best
index of the value of lambda where the optimum is attained.
References
Jacquemain, A., C. Heuchenne, and E. Pircalabelu (2022). A penalised bootstrap estimation procedure for the explained Gini coefficient.
See Also
Lorenz.Reg
, PLR.wrap
, Lorenz.FABS
, Lorenz.SCADFABS
Examples
data(Data.Incomes)
YX_mat <- Data.Incomes[,-2]
PLR <- PLR.wrap(YX_mat, h = nrow(YX_mat)^(-1/5.5), eps = 0.005)
PLR.BIC(YX_mat, PLR$theta)