Analysis using Landmark Models


[Up] [Top]

Documentation for package ‘Landmarking’ version 1.0.0

Help Pages

add_cv_number Assign a k-fold cross-validation number
data_repeat_outcomes Simulated repeat measurement and time-to-event data
fit_LME_landmark Fit a landmarking model using a linear mixed effects (LME) model for the longitudinal submodel
fit_LME_longitudinal Fit a landmarking model using a linear mixed effects (LME) model for the longitudinal submodel
fit_LOCF_landmark Fit a landmark model using a last observation carried forward (LOCF) method for the longitudinal data
fit_LOCF_longitudinal Find the last observation carried forward (LOCF) values for covariates in a dataset
fit_survival_model Fit a survival sub-model
get_model_assessment Compute C-index and Brier score
mixoutsamp Calculate point estimates from a linear mixed effects (LME) model for new data
plot.landmark Create a calibration plot
predict.landmark Predict the risk of an event for a new individual using the landmark model
return_ids_with_LOCF Select individuals in a dataset with a last observation carried forward (LOCF) at a landmark time