bCond.estParamCopula |
Estimation of the conditional parameters of a parametric conditional copula with discrete conditioning events. |
bCond.pobs |
Computing the pseudo-observations in case of discrete conditioning events |
bCond.simpA.CKT |
Function for testing the simplifying assumption with data-driven box-type conditioning events |
bCond.simpA.param |
Test of the assumption that a conditional copulas does not vary through a list of discrete conditioning events |
bCond.treeCKT |
Construct a binary tree for the modeling the conditional Kendall's tau |
CKT.estimate |
Estimation of conditional Kendall's tau between two variables X1 and X2 given Z = z |
CKT.fit.GLM |
Estimation of conditional Kendall's taus by penalized GLM |
CKT.fit.nNets |
Estimation of conditional Kendall's taus by model averaging of neural networks |
CKT.fit.randomForest |
Fit a Random Forest that can be used for the estimation of conditional Kendall's tau. |
CKT.fit.tree |
Estimation of conditional Kendall's taus using a classification tree |
CKT.hCV.Kfolds |
Choose the bandwidth for kernel estimation of conditional Kendall's tau using cross-validation |
CKT.hCV.l1out |
Choose the bandwidth for kernel estimation of conditional Kendall's tau using cross-validation |
CKT.kendallReg.fit |
Fit Kendall's regression, a GLM-type model for conditional Kendall's tau |
CKT.KendallReg.LambdaCV |
Kendall's regression: choice of the penalization parameter by K-folds cross-validation |
CKT.kendallReg.predict |
Fit Kendall's regression, a GLM-type model for conditional Kendall's tau |
CKT.kernel |
Estimation of conditional Kendall's tau using kernel smoothing |
CKT.predict.GLM |
Estimation of conditional Kendall's taus by penalized GLM |
CKT.predict.kNN |
Prediction of conditional Kendall's tau using nearest neighbors |
CKT.predict.nNets |
Predict the values of conditional Kendall's tau using Model Averaging of Neural Networks |
CKT.predict.randomForest |
Fit a Random Forest that can be used for the estimation of conditional Kendall's tau. |
CKT.predict.tree |
Estimation of conditional Kendall's taus using a classification tree |
CKTmatrix.kernel |
Estimate the conditional Kendall's tau matrix at different conditioning points |
computeKernelMatrix |
Computing the kernel matrix |
computeMatrixSignPairs |
Compute the matrix of signs of pairs |
conv_treeCKT |
Converting to matrix of indicators / matrix of conditional Kendall's tau |
datasetPairs |
Construct a dataset of pairs of observations for the estimation of conditional Kendall's tau |
estimateCondCDF_matrix |
Compute kernel-based conditional marginal (univariate) cdfs |
estimateCondCDF_vec |
Compute kernel-based conditional marginal (univariate) cdfs |
estimateCondQuantiles |
Compute kernel-based conditional quantiles |
estimateNPCondCopula |
Compute a kernel-based estimator of the conditional copula |
estimateParCondCopula |
Estimation of parametric conditional copulas |
estimateParCondCopula_ZIJ |
Estimation of parametric conditional copulas |
matrixInd2matrixCKT |
Converting to matrix of indicators / matrix of conditional Kendall's tau |
simpA.kendallReg |
Test of the simplifying assumption using the constancy of conditional Kendall's tau |
simpA.NP |
Nonparametric testing of the simplifying assumption |
simpA.param |
Semiparametric testing of the simplifying assumption |
treeCKT2matrixCKT |
Converting to matrix of indicators / matrix of conditional Kendall's tau |
treeCKT2matrixInd |
Converting to matrix of indicators / matrix of conditional Kendall's tau |