computeKernelMatrix {CondCopulas} | R Documentation |
Computing the kernel matrix
Description
This function computes a matrix of dimensions (length(observedX3), length(newX3))
,
whose element at coordinate (i,j)
is
K_{h}(
observedX3
[i] -
newX3
[j] )
,
where K_h(x) := K(x/h) / h
and K
is the kernel
.
Usage
computeKernelMatrix(observedX, newX, kernel, h)
Arguments
observedX |
a numeric vector of observations of X3.
on the interval |
newX |
a numeric vector of points of X3. |
kernel |
a character string describing the kernel to be used.
Possible choices are |
h |
the bandwidth |
Value
a numeric matrix of dimensions (length(observedX), length(newX))
See Also
estimateCondCDF_matrix
, estimateCondCDF_vec
,
Examples
Y = MASS::mvrnorm(n = 100, mu = c(0,0), Sigma = cbind(c(1, 0.9), c(0.9, 1)))
matrixK = computeKernelMatrix(observedX = Y[,2], newX = c(0, 1, 2.5),
kernel = "Gaussian", h = 0.8)
# To have an estimator of the conditional expectation of Y1 given Y2 = 0, 1, 2.5
Y[,1] * matrixK[,1] / sum(matrixK[,1])
Y[,1] * matrixK[,2] / sum(matrixK[,2])
Y[,1] * matrixK[,3] / sum(matrixK[,3])
[Package CondCopulas version 0.1.3 Index]