getmetrics.zonohedron {zonohedra} | R Documentation |
Get Important Metrics about a Zonohedron, and Print and Summarize Them
Description
Get some important zonohedron metrics; for most some computation is needed.
The print()
function prints nicely formatted
facts about a zonohedron, including its matroid.
The summary()
function prints a single-line summary,
formatted as a row in a data frame.
Usage
## S3 method for class 'zonohedron'
getmetrics( x )
## S3 method for class 'zonohedron'
print( x, trans2=FALSE, matroid=TRUE, ... )
## S3 method for class 'zonohedron'
summary( object, ... )
Arguments
x |
a |
trans2 |
if |
matroid |
if |
object |
a |
... |
for |
Value
getmetrics.zonohedron()
returns a list with these items:
vertices |
the number of vertices |
edges |
the number of edges |
facets |
the number of facets (2D faces); all of them are zonogons |
area |
the sum of the areas of all the facets |
volume |
as a polytope |
All of these are always positive.
print.zonohedron()
returns TRUE
or FALSE
.
summary.zonohedron()
returns a data frame, see Examples.
See Also
genlist
,
zonohedron()
,
Examples
zono = zonohedron( classics.genlist[['BD']] )
zono
# zonohedron:
# fullname: Bilinski dodecahedron
# generators (original): 4
# generators with multiples: 0
# generators (simplified): 4
# number of facets: 12 [6 antipodal facet-pairs]
# facets that contain 0: 4 { 1 3 4 6 }
# number of edges: 24
# center: 0.809017 2.118034 1.309017
# pointed: TRUE
# salient: TRUE
# area: 38.83282
# volume: 16.94427
#
# matroid:
# ground set: 4 points {1 2 3 4}
# hyperplanes: 6 {1 2} {1 3} {1 4} {2 3} {2 4} {3 4}
# rank: 3
# loops: 0 {}
# multiple groups: 0 {}
# uniform: TRUE
# paving: TRUE
# simple: TRUE
# This matroid is constructed from a 3x4 real matrix.
# 1 2 3 4
# [1,] 1.000000 1.618034 0.000000 -1.000000
# [2,] 1.618034 0.000000 1.000000 1.618034
# [3,] 0.000000 1.000000 1.618034 0.000000
summary( zono )
# fullname generators vertices edges facets area volume
# 1 Bilinski dodecahedron 4 14 24 12 38.83282 16.94427
zono4 = zonohedron( classics.genlist[['RI']] )
zono7 = zonohedron( classics.genlist[['TO']] )
summary( zono, zono4, zono7 )
# fullname generators vertices edges facets area volume
# 1 Bilinski dodecahedron 4 14 24 12 38.83282 16.94427
# 2 rhombic icosahedron 5 22 40 20 64.72136 42.36068
# 3 truncated octahedron 6 24 36 14 53.56922 32.00000