xoprob {xoi} | R Documentation |
Distribution of number of crossovers
Description
Calculates the probability of 0, 1, 2, or >2 crossovers for a chromosome of a given length, for the gamma model.
Usage
xoprob(
nu,
L = 103,
max.conv = 25,
integr.tol = 0.00000001,
max.subd = 1000,
min.subd = 10
)
Arguments
nu |
The interference parameter in the gamma model. |
L |
Length of the chromosome (in cM). |
max.conv |
Maximum limit for summation in the convolutions to get inter-crossover distance distribution from the inter-chiasma distance distributions. This should be greater than the maximum number of chiasmata on the 4-strand bundle. |
integr.tol |
Tolerance for convergence of numerical integration. |
max.subd |
Maximum number of subdivisions in numerical integration. |
min.subd |
Minimum number of subdivisions in numerical integration. |
Details
Let f(x;\nu)
denote the density of a gamma random variable
with parameters shape=\nu
and rate=2\nu
, and let
f_k(x;\nu)
denote the density of a gamma random variable
with parameters shape=k \nu
and rate=2\nu
.
The distribution of the distance from one crossover to the next is
f^*(x;\nu) = \sum_{k=1}^{\infty} f_k(x;\nu)/2^k
.
The distribution of the distance from the start of the chromosome to the
first crossover is g^*(x;\nu) = 1 - F^*(x;\nu)
where F^*
is the cdf of f^*
.
We calculate the desired probabilities by numerical integration.
Value
A vector of length 4, giving the probabilities of 0, 1, 2, or >2
crossovers, respectively, on a chromosome of length L
cM.
Author(s)
Karl W Broman, broman@wisc.edu
References
Broman, K. W. and Weber, J. L. (2000) Characterization of human crossover interference. Am. J. Hum. Genet. 66, 1911–1926.
Broman, K. W., Rowe, L. B., Churchill, G. A. and Paigen, K. (2002) Crossover interference in the mouse. Genetics 160, 1123–1131.
McPeek, M. S. and Speed, T. P. (1995) Modeling interference in genetic recombination. Genetics 139, 1031–1044.
See Also
location.given.one()
, first.given.two()
,
distance.given.two()
, joint.given.two()
,
ioden()
, firstden()
, gammacoi()
Examples
xoprob(1, L=103)
xoprob(4.3, L=103)