Two-Step Kernel Ridge Regression for Network Predictions


[Up] [Top]

Documentation for package ‘xnet’ version 0.1.11

Help Pages

A C D E F G H I K L M N P R S T U V W X misc

xnet-package Two-step kernel ridge regression for network analysis

-- A --

alpha Getters for linearFilter objects
alpha-method Getters for linearFilter objects
as_tskrr convert tskrr models
as_tskrr-method convert tskrr models
as_tuned convert tskrr models
as_tuned-method convert tskrr models

-- C --

colMeans-method Getters for linearFilter objects
colnames-method Extract labels from a tskrr object
create_grid Create a grid of values for tuning tskrr

-- D --

dim-method Get the dimensions of a tskrr object
dim.tskrr Get the dimensions of a tskrr object
dimnames-method Extract labels from a tskrr object
dimnames.tskrr Extract labels from a tskrr object
drugSim drug target interactions for neural receptors
drugtarget drug target interactions for neural receptors
drugTargetInteraction drug target interactions for neural receptors

-- E --

eigen2hat Calculate the hat matrix from an eigen decomposition
eigen2map Calculate the hat matrix from an eigen decomposition
eigen2matrix Calculate the hat matrix from an eigen decomposition
Extract-permtest Getters for permtest objects

-- F --

fitted-method extract the predictions
fitted.linearFilter extract the predictions
fitted.tskrr extract the predictions

-- G --

getters_linearFilter Getters for linearFilter objects
get_eigen Getters for tskrr objects
get_grid Getters for tskrrTune objects
get_kernel Getters for tskrr objects
get_kernelmatrix Getters for tskrr objects
get_loo_fun Retrieve a loo function
get_loo_fun-method Retrieve a loo function
get_loss_values Getters for tskrrTune objects

-- H --

has_hat Getters for tskrr objects
has_imputed_values Getters for tskrrImpute objects
has_onedim Getters for tskrrTune objects
hat Return the hat matrix of a tskrr model
hat-method Return the hat matrix of a tskrr model

-- I --

impute_tskrr Impute missing values in a label matrix
impute_tskrr.fit Impute values based on a two-step kernel ridge regression
is_heterogeneous Getters for tskrr objects
is_homogeneous Getters for tskrr objects
is_imputed Getters for tskrrImpute objects
is_square Functions to check matrices
is_symmetric Test symmetry of a matrix
is_tskrr Getters for tskrr objects
is_tuned Getters for tskrrTune objects

-- K --

Kmat_y2h_sc Protein interaction for yeast

-- L --

labels-method Extract labels from a tskrr object
labels.tskrr Extract labels from a tskrr object
lambda Getters for tskrr objects
lambda-method Getters for tskrr objects
linearFilter Class linearFilter
linearFilter-class Class linearFilter
linear_filter Fit a linear filter over a label matrix
loo Leave-one-out cross-validation for tskrr
loo-method Leave-one-out cross-validation for tskrr
loo.b Leave-one-out cross-validation for two-step kernel ridge regression
loo.c Leave-one-out cross-validation for two-step kernel ridge regression
loo.e.skew Leave-one-out cross-validation for two-step kernel ridge regression
loo.e.sym Leave-one-out cross-validation for two-step kernel ridge regression
loo.e0.skew Leave-one-out cross-validation for two-step kernel ridge regression
loo.e0.sym Leave-one-out cross-validation for two-step kernel ridge regression
loo.i Leave-one-out cross-validation for two-step kernel ridge regression
loo.i.lf Leave-one-out cross-validation for two-step kernel ridge regression
loo.i0 Leave-one-out cross-validation for two-step kernel ridge regression
loo.i0.lf Leave-one-out cross-validation for two-step kernel ridge regression
loo.r Leave-one-out cross-validation for two-step kernel ridge regression
loo.v Leave-one-out cross-validation for two-step kernel ridge regression
loo_internal Leave-one-out cross-validation for two-step kernel ridge regression
loss Calculate or extract the loss of a tskrr model
loss-method Calculate or extract the loss of a tskrr model
loss_auc loss functions
loss_functions loss functions
loss_mse loss functions

-- M --

match_labels Reorder the label matrix
mean-method Getters for linearFilter objects
mean.linearFilter Getters for linearFilter objects

-- N --

na_removed Getters for linearFilter objects
na_removed-method Getters for linearFilter objects

-- P --

permtest Calculate the relative importance of the edges
permtest-class Class permtest
permtest-method Calculate the relative importance of the edges
permutations Getters for permtest objects
plot.tskrr plot a heatmap of the predictions from a tskrr model
plot_grid Plot the grid of a tuned tskrr model
predict-method predict method for tskrr fits
predict.tskrr predict method for tskrr fits
print.permtest Calculate the relative importance of the edges
proteinInteraction Protein interaction for yeast

-- R --

residuals calculate residuals from a tskrr model
residuals-method calculate residuals from a tskrr model
residuals.tskrr calculate residuals from a tskrr model
response Getters for tskrr objects
response-method Getters for tskrr objects
rowMeans-method Getters for linearFilter objects
rownames-method Extract labels from a tskrr object

-- S --

symmetry Getters for tskrr objects

-- T --

targetSim drug target interactions for neural receptors
test_symmetry test the symmetry of a matrix
tskrr Fitting a two step kernel ridge regression
tskrr-class Class tskrr
tskrr.fit Carry out a two-step kernel ridge regression
tskrrHeterogeneous Class tskrrHeterogeneous
tskrrHeterogeneous-class Class tskrrHeterogeneous
tskrrHomogeneous Class tskrrHomogeneous
tskrrHomogeneous-class Class tskrrHomogeneous
tskrrImpute Class tskrrImpute
tskrrImpute-class Class tskrrImpute
tskrrImputeHeterogeneous Class tskrrImputeHeterogeneous
tskrrImputeHeterogeneous-class Class tskrrImputeHeterogeneous
tskrrImputeHomogeneous Class tskrrImputeHomogeneous
tskrrImputeHomogeneous-class Class tskrrImputeHomogeneous
tskrrTune Class tskrrTune
tskrrTune-class Class tskrrTune
tskrrTuneHeterogeneous Class tskrrTuneHeterogeneous
tskrrTuneHeterogeneous-class Class tskrrTuneHeterogeneous
tskrrTuneHomogeneous Class tskrrTuneHomogeneous
tskrrTuneHomogeneous-class Class tskrrTuneHomogeneous
tune tune the lambda parameters for a tskrr
tune-method tune the lambda parameters for a tskrr

-- U --

update Update a tskrr object with a new lambda
update-method Update a tskrr object with a new lambda

-- V --

valid_dimensions Functions to check matrices
valid_labels Test the correctness of the labels.

-- W --

weights Extract weights from a tskrr model
weights-method Extract weights from a tskrr model
which_imputed Getters for tskrrImpute objects

-- X --

xnet Two-step kernel ridge regression for network analysis

-- misc --

[-method Getters for permtest objects