LogarithmicMultiplicativeCooling {xegaPopulation} | R Documentation |
Logarithmic multiplicative cooling.
Description
This schedule decreases by the inverse proportion of the
natural logarithm
of k
. lF$Alpha()
should be larger than 1.
Usage
LogarithmicMultiplicativeCooling(k, lF)
Arguments
k |
Number of steps to discount. |
lF |
Local configuration. |
Details
Temperature is updated at the end of each generation
in the main loop of the genetic algorithm.
lF$Temp0()
is the starting temperature.
lF$Alpha()
is a scaling factor.
Value
Temperature at time k.
Aarts, E., and Korst, J. (1989): Simulated Annealing and Boltzmann Machines. A Stochastic Approach to Combinatorial Optimization and Neural Computing. John Wiley & Sons, Chichester. (ISBN:0-471-92146-7)
See Also
Other Cooling:
ExponentialAdditiveCooling()
,
ExponentialMultiplicativeCooling()
,
PowerAdditiveCooling()
,
PowerMultiplicativeCooling()
,
TrigonometricAdditiveCooling()
Examples
parm<-function(x){function() {return(x)}}
lF<-list(Temp0=parm(100), Alpha=parm(1.01))
LogarithmicMultiplicativeCooling(0, lF)
LogarithmicMultiplicativeCooling(2, lF)
[Package xegaPopulation version 1.0.0.0 Index]