ExponentialMultiplicativeCooling {xegaPopulation} | R Documentation |
Exponential multiplicative cooling.
Description
The temperature at time k is the net present value
of the starting temperature. The discount factor
is lF$Alpha()
.
lF$Alpha()
should be in [0, 1]
.
Usage
ExponentialMultiplicativeCooling(k, lF)
Arguments
k |
Number of steps to discount. |
lF |
Local configuration. |
Details
Temperature is updated at the end of each generation
in the main loop of the genetic algorithm.
lF$Temp0()
is the starting temperature.
lF$Alpha()
is the discount factor.
Value
Temperature at time k.
References
Kirkpatrick, S., Gelatt, C. D. J, and Vecchi, M. P. (1983): Optimization by Simulated Annealing. Science, 220(4598): 671-680. <doi:10.1126/science.220.4598.671>
See Also
Other Cooling:
ExponentialAdditiveCooling()
,
LogarithmicMultiplicativeCooling()
,
PowerAdditiveCooling()
,
PowerMultiplicativeCooling()
,
TrigonometricAdditiveCooling()
Examples
parm<-function(x){function() {return(x)}}
lF<-list(Temp0=parm(100), Alpha=parm(0.99))
ExponentialMultiplicativeCooling(0, lF)
ExponentialMultiplicativeCooling(2, lF)
[Package xegaPopulation version 1.0.0.0 Index]