| derivation {weyl} | R Documentation |
Derivations
Description
A derivation D of an algebra A is a linear
operator that satisfies D(d_1d_2)=d_1D(d_2)+D(d_1)d_2,
for every d_1,d_2\in A. If a derivation is of the form
D(d)=[d,f]=df-fd for some fixed f\in
A, we say that D is an inner derivation.
Function as.der() returns a derivation with
as.der(f)(g)=fg-gf.
Usage
as.der(S)
Arguments
S |
Weyl object |
Value
Returns a function, a derivation
Author(s)
Robin K. S. Hankin
Examples
(o <- rweyl(n=2,d=2))
(f <- as.der(o))
d1 <-rweyl(n=1,d=2)
d2 <-rweyl(n=2,d=2)
f(d1*d2) == d1*f(d2) + f(d1)*d2 # should be TRUE
[Package weyl version 0.0-5 Index]