degree {weyl} | R Documentation |
The degree of a weyl
object
Description
The degree of a monomial weyl object
x^a\partial^b
is defined as a+b
. The degree
of a general weyl object expressed as a linear combination of
monomials is the maximum of the degrees of these monomials. Following
Coutinho we have:
-
\mathrm{deg}(d_1+d_2)\leq\max(\mathrm{deg}(d_1)+ \mathrm{deg}(d_2))
-
\mathrm{deg}(d_1d_2) = \mathrm{deg}(d_1)+ \mathrm{deg}(d_2)
-
\mathrm{deg}(d_1d_2-d_2d_1)\leq\mathrm{deg}(d_1)+ \mathrm{deg}(d_2)-2
Usage
deg(S)
Arguments
S |
Object of class |
Value
Nonnegative integer (or -\infty
for the zero Weyl
object)
Note
The degree of the zero object is conventionally
-\infty
.
Author(s)
Robin K. S. Hankin
Examples
(a <- rweyl())
deg(a)
d1 <- rweyl(n=2)
d2 <- rweyl(n=2)
deg(d1+d2) <= deg(d1) + deg(d2)
deg(d1*d2) == deg(d1) + deg(d2)
deg(d1*d2-d2*d1) <= deg(d1) + deg(d2) -2
[Package weyl version 0.0-5 Index]