| inverseWeibull {weibullness} | R Documentation |
The inverse Weibull distribution
Description
Density function, distribution function, quantile function, random generation,
raw moments and limited moments for the Inverse Weibull distribution
with parameters shape and scale.
Usage
dinvweibull(x, shape, scale = 1, log = FALSE)
pinvweibull(q, shape, scale = 1, lower.tail = TRUE, log.p = FALSE)
qinvweibull(p, shape, scale = 1, lower.tail = TRUE, log.p = FALSE)
rinvweibull(n, shape, scale = 1)
Arguments
x, q |
vector of quantiles. |
p |
vector of probabilities. |
n |
number of observations. If |
shape, scale |
parameters. Must be positive. |
log, log.p |
logical; if |
lower.tail |
logical; if |
Details
The probability density function of the inverse Weibull distribution with parameters shape
=\beta and scale = \theta is given by
f(x) = \frac{\beta (\theta/x)^\beta e^{-(\theta/x)^\beta}}{x}
where x > 0, \beta > 0 and \theta > 0.
The cumulative distribution function is given by
F(X)=\exp(-(\theta/x)^\beta)
Value
dinvweibull gives the density, pinvweibull gives the distribution function,
qinvweibull gives the quantile function, and rinvweibull generates random deviates.
Author(s)
Chanseok Park
Examples
x = (-1):2
names(x) = letters[1:4]
dinvweibull(x, shape=2)
exp( dinvweibull(x, shape=2, log=TRUE) )
pinvweibull (1, shape=2)
exp(pinvweibull (1, shape=2, log=TRUE))
q = c(-1,0,1,2)
qinvweibull ( pinvweibull (q, shape=2), shape=2 )