model_maxent {wallace} | R Documentation |
model_maxent Generate maxent.jar or maxnet model
Description
This functions generates maxent.jar or maxnet models using ENMeval 2.0 and user provided tuning parameters.
Usage
model_maxent(
occs,
bg,
user.grp,
bgMsk,
rms,
rmsStep,
fcs,
clampSel,
algMaxent,
catEnvs = NULL,
parallel = FALSE,
numCores = NULL,
logger = NULL,
spN = NULL
)
Arguments
occs |
data frame of cleaned or processed occurrences obtained from components occs: Obtain occurrence data or, poccs: Process occurrence data. |
bg |
coordinates of background points to be used for modeling. |
user.grp |
a list of two vectors containing group assignments for occurrences (occs.grp) and background points (bg.grp). |
bgMsk |
a RasterStack or a RasterBrick of environmental layers cropped and masked to match the provided background extent. |
rms |
vector of range of regularization multipliers to be used in the ENMeval run. |
rmsStep |
step to be used when defining regularization multipliers to be used from the provided range. |
fcs |
feature classes to be tested in the ENMeval run. |
clampSel |
Boolean use of clamping in the model. |
algMaxent |
character. algorithm to be used in modeling. A selection of "maxnet" or "maxent.jar". |
catEnvs |
if categorical predictor variables are included must provide the names. |
parallel |
logical. Whether to use parallel in the generation of models. Default is FALSE |
numCores |
numeric. If using parallel how many cores to use. Default is NULL. |
logger |
Stores all notification messages to be displayed in the Log Window of Wallace GUI. Insert the logger reactive list here for running in shiny, otherwise leave the default NULL. |
spN |
character. Species name to be used for all logger messages. |
Details
The function generates model in ENMeval using a user provided partition of occurrences from previous components in the GUI. User can activate clamping and input tuning arguments to be used for model building.
Value
Function returns an ENMevaluate object with all the evaluated models and a selection of appropriate fields.
Author(s)
Jamie M. Kass <jamie.m.kass@gmail.com>
Gonzalo E. Pinilla-Buitrago <gepinillab@gmail.com>
See Also
Examples
## Not run:
envs <- envs_userEnvs(rasPath = list.files(system.file("extdata/wc",
package = "wallace"),
pattern = ".tif$", full.names = TRUE),
rasName = list.files(system.file("extdata/wc",
package = "wallace"),
pattern = ".tif$", full.names = FALSE))
occs <- read.csv(system.file("extdata/Bassaricyon_alleni.csv",
package = "wallace"))
bg <- read.csv(system.file("extdata/Bassaricyon_alleni_bgPoints.csv",
package = "wallace"))
partblock <- part_partitionOccs(occs, bg, method = 'block')
rms <- c(1:2)
rmsStep <- 1
fcs <- c('L', 'LQ')
m <- model_maxent(occs = occs, bg = bg, user.grp = partblock,
bgMsk = envs, rms = rms, rmsStep, fcs,
clampSel = TRUE, algMaxent = "maxnet",
parallel = FALSE)
## End(Not run)