vsp {vsp} | R Documentation |
Semi-Parametric Factor Analysis via Vintage Sparse PCA
Description
This code implements TODO.
Usage
vsp(x, rank, ...)
## Default S3 method:
vsp(x, rank, ...)
## S3 method for class 'matrix'
vsp(
x,
rank,
...,
center = FALSE,
recenter = FALSE,
degree_normalize = TRUE,
renormalize = FALSE,
tau_row = NULL,
tau_col = NULL,
kaiser_normalize_u = FALSE,
kaiser_normalize_v = FALSE,
rownames = NULL,
colnames = NULL
)
## S3 method for class 'Matrix'
vsp(
x,
rank,
...,
center = FALSE,
recenter = FALSE,
degree_normalize = TRUE,
renormalize = FALSE,
tau_row = NULL,
tau_col = NULL,
kaiser_normalize_u = FALSE,
kaiser_normalize_v = FALSE,
rownames = NULL,
colnames = NULL
)
## S3 method for class 'dgCMatrix'
vsp(
x,
rank,
...,
center = FALSE,
recenter = FALSE,
degree_normalize = TRUE,
renormalize = FALSE,
tau_row = NULL,
tau_col = NULL,
kaiser_normalize_u = FALSE,
kaiser_normalize_v = FALSE,
rownames = NULL,
colnames = NULL
)
## S3 method for class 'igraph'
vsp(x, rank, ..., edge_weights = NULL)
Arguments
x |
Either a graph adjacency matrix, igraph::igraph or
tidygraph::tbl_graph. If |
rank |
The number of factors to calculate. |
... |
These dots are for future extensions and must be empty. |
center |
Should the adjacency matrix be row and column centered?
Defaults to |
recenter |
Should the varimax factors be re-centered around the
original factor means? Only used when |
degree_normalize |
Should the regularized graph laplacian be used instead of the
raw adjacency matrix? Defaults to |
renormalize |
Should the regularized graph laplacian be used instead of the
raw adjacency matrix? Defaults to |
tau_row |
Row regularization term. Default is |
tau_col |
Column regularization term. Default is |
kaiser_normalize_u |
Whether or not to use Kaiser normalization
when rotating the left singular vectors |
kaiser_normalize_v |
Whether or not to use Kaiser normalization
when rotating the right singular vectors |
rownames |
Character vector of row names of |
colnames |
Character vector of column names of |
edge_weights |
When |
Details
Sparse SVDs use RSpectra
for performance.
Value
An object of class vsp
. TODO: Details
Examples
library(LRMF3)
vsp(ml100k, rank = 2)