| vsp {vsp} | R Documentation | 
Semi-Parametric Factor Analysis via Vintage Sparse PCA
Description
This code implements TODO.
Usage
vsp(x, rank, ...)
## Default S3 method:
vsp(x, rank, ...)
## S3 method for class 'matrix'
vsp(
  x,
  rank,
  ...,
  center = FALSE,
  recenter = FALSE,
  degree_normalize = TRUE,
  renormalize = FALSE,
  tau_row = NULL,
  tau_col = NULL,
  kaiser_normalize_u = FALSE,
  kaiser_normalize_v = FALSE,
  rownames = NULL,
  colnames = NULL
)
## S3 method for class 'Matrix'
vsp(
  x,
  rank,
  ...,
  center = FALSE,
  recenter = FALSE,
  degree_normalize = TRUE,
  renormalize = FALSE,
  tau_row = NULL,
  tau_col = NULL,
  kaiser_normalize_u = FALSE,
  kaiser_normalize_v = FALSE,
  rownames = NULL,
  colnames = NULL
)
## S3 method for class 'dgCMatrix'
vsp(
  x,
  rank,
  ...,
  center = FALSE,
  recenter = FALSE,
  degree_normalize = TRUE,
  renormalize = FALSE,
  tau_row = NULL,
  tau_col = NULL,
  kaiser_normalize_u = FALSE,
  kaiser_normalize_v = FALSE,
  rownames = NULL,
  colnames = NULL
)
## S3 method for class 'igraph'
vsp(x, rank, ..., edge_weights = NULL)
Arguments
x | 
 Either a graph adjacency matrix, igraph::igraph or
tidygraph::tbl_graph. If   | 
rank | 
 The number of factors to calculate.  | 
... | 
 These dots are for future extensions and must be empty.  | 
center | 
 Should the adjacency matrix be row and column centered?
Defaults to   | 
recenter | 
 Should the varimax factors be re-centered around the
original factor means? Only used when   | 
degree_normalize | 
 Should the regularized graph laplacian be used instead of the
raw adjacency matrix? Defaults to   | 
renormalize | 
 Should the regularized graph laplacian be used instead of the
raw adjacency matrix? Defaults to   | 
tau_row | 
 Row regularization term. Default is   | 
tau_col | 
 Column regularization term. Default is   | 
kaiser_normalize_u | 
 Whether or not to use Kaiser normalization
when rotating the left singular vectors   | 
kaiser_normalize_v | 
 Whether or not to use Kaiser normalization
when rotating the right singular vectors   | 
rownames | 
 Character vector of row names of   | 
colnames | 
 Character vector of column names of   | 
edge_weights | 
 When   | 
Details
Sparse SVDs use RSpectra for performance.
Value
An object of class vsp. TODO: Details
Examples
library(LRMF3)
vsp(ml100k, rank = 2)