Vintage Sparse PCA for Semi-Parametric Factor Analysis


[Up] [Top]

Documentation for package ‘vsp’ version 0.1.1

Help Pages

bff Find features most associated with cluster membership
bind_svd_u Add Z factor loadings to node table of tidygraph
bind_svd_v Add Z factor loadings to node table of tidygraph
bind_varimax_y Add Z factor loadings to node table of tidygraph
bind_varimax_z Add Z factor loadings to node table of tidygraph
get_svd_u Get left singular vectors in a tibble
get_svd_v Get left singular vectors in a tibble
get_varimax_y Get left singular vectors in a tibble
get_varimax_z Get left singular vectors in a tibble
get_y_hubs Get most important hubs for each Z factor
get_z_hubs Get most important hubs for each Z factor
plot_ipr_pairs Plot pairs of inverse participation ratios for singular vectors
plot_mixing_matrix Plot the mixing matrix B
plot_svd_u Create a pairs plot of select Y factors
plot_svd_v Create a pairs plot of select Y factors
plot_varimax_y_pairs Create a pairs plot of select Y factors
plot_varimax_z_pairs Create a pairs plot of select Y factors
screeplot.vsp_fa Create a screeplot from a factor analysis object
set_y_factor_names Give the dimensions of Z factors informative names
set_z_factor_names Give the dimensions of Z factors informative names
vsp Semi-Parametric Factor Analysis via Vintage Sparse PCA
vsp.default Semi-Parametric Factor Analysis via Vintage Sparse PCA
vsp.dgCMatrix Semi-Parametric Factor Analysis via Vintage Sparse PCA
vsp.igraph Semi-Parametric Factor Analysis via Vintage Sparse PCA
vsp.Matrix Semi-Parametric Factor Analysis via Vintage Sparse PCA
vsp.matrix Semi-Parametric Factor Analysis via Vintage Sparse PCA
vsp.svd_like Perform varimax rotation on a low rank matrix factorization
vsp_fa Create a vintage sparse factor analysis object