vpc {vpc}R Documentation

VPC function

Description

Creates a VPC plot from observed and simulation data

Usage

vpc(sim, ...)

## Default S3 method:
vpc(sim, ...)

vpc_vpc(
  sim = NULL,
  obs = NULL,
  psn_folder = NULL,
  bins = "jenks",
  n_bins = "auto",
  bin_mid = "mean",
  obs_cols = NULL,
  sim_cols = NULL,
  software = "auto",
  show = NULL,
  stratify = NULL,
  pred_corr = FALSE,
  pred_corr_lower_bnd = 0,
  pi = c(0.05, 0.95),
  ci = c(0.05, 0.95),
  uloq = NULL,
  lloq = NULL,
  log_y = FALSE,
  log_y_min = 0.001,
  xlab = NULL,
  ylab = NULL,
  title = NULL,
  smooth = TRUE,
  vpc_theme = NULL,
  facet = "wrap",
  scales = "fixed",
  labeller = NULL,
  vpcdb = FALSE,
  verbose = FALSE,
  ...
)

Arguments

sim

this is usually a data.frame with observed data, containing the independent and dependent variable, a column indicating the individual, and possibly covariates. E.g. load in from NONMEM using read_table_nm. However it can also be an object like a nlmixr or xpose object

...

Other arguments sent to other methods (like xpose or nlmixr); Note these arguments are not used in the default vpc and are ignored by the default method.

obs

a data.frame with observed data, containing the independent and dependent variable, a column indicating the individual, and possibly covariates. E.g. load in from NONMEM using read_table_nm

psn_folder

instead of specifying "sim" and "obs", specify a PsN-generated VPC-folder

bins

either "density", "time", or "data", "none", or one of the approaches available in classInterval() such as "jenks" (default) or "pretty", or a numeric vector specifying the bin separators.

n_bins

when using the "auto" binning method, what number of bins to aim for

bin_mid

either "mean" for the mean of all timepoints (default) or "middle" to use the average of the bin boundaries.

obs_cols

observation dataset column names (list elements: "dv", "idv", "id", "pred")

sim_cols

simulation dataset column names (list elements: "dv", "idv", "id", "pred", "sim")

software

name of software platform using (e.g. nonmem, phoenix)

show

what to show in VPC (obs_dv, obs_ci, pi, pi_as_area, pi_ci, obs_median, sim_median, sim_median_ci)

stratify

character vector of stratification variables. Only 1 or 2 stratification variables can be supplied.

pred_corr

perform prediction-correction?

pred_corr_lower_bnd

lower bound for the prediction-correction

pi

simulated prediction interval to plot. Default is c(0.05, 0.95),

ci

confidence interval to plot. Default is (0.05, 0.95)

uloq

Number or NULL indicating upper limit of quantification. Default is NULL.

lloq

Number or NULL indicating lower limit of quantification. Default is NULL.

log_y

Boolean indicting whether y-axis should be shown as logarithmic. Default is FALSE.

log_y_min

minimal value when using log_y argument. Default is 1e-3.

xlab

label for x axis

ylab

label for y axis

title

title

smooth

"smooth" the VPC (connect bin midpoints) or show bins as rectangular boxes. Default is TRUE.

vpc_theme

theme to be used in VPC. Expects list of class vpc_theme created with function vpc_theme()

facet

either "wrap", "columns", or "rows"

scales

either "fixed" (default), "free_y", "free_x" or "free"

labeller

ggplot2 labeller function to be passed to underlying ggplot object

vpcdb

Boolean whether to return the underlying vpcdb rather than the plot

verbose

show debugging information (TRUE or FALSE)

Value

a list containing calculated VPC information (when vpcdb=TRUE), or a ggplot2 object (default)

See Also

sim_data, vpc_cens, vpc_tte, vpc_cat

Examples


## See vpc.ronkeizer.com for more documentation and examples
library(vpc)

# Basic commands:
vpc(sim = simple_data$sim, obs = simple_data$obs)
vpc(sim = simple_data$sim, obs = simple_data$obs, lloq = 20)


[Package vpc version 1.2.2 Index]