deseq_polar {volcano3D} | R Documentation |
Convert DESeq2 objects to a volcano3d object
Description
This function is used instead of polar_coords
if you have raw
RNA-Seq count data. It takes 2 DESeqDataSet
objects, extracts statistical
results and converts the results to a 'volc3d' object, which can be directly
plotted.
Usage
deseq_polar(
object,
objectLRT,
contrast = NULL,
data = NULL,
pcutoff = 0.05,
padj.method = "BH",
filter_pairwise = TRUE,
...
)
Arguments
object |
An object of class 'DESeqDataSet' with the full design formula.
The function |
objectLRT |
An object of class 'DESeqDataSet' with the reduced design
formula. The function |
contrast |
Character value specifying column within the metadata stored
in the DESeq2 dataset objects is the outcome variable. This column must
contain a factor with 3 levels. If not set, the function will select the
last term in the design formula of |
data |
Optional matrix containing gene expression data. If not supplied,
the function will pull the expression data from within the DESeq2 object
using the DESeq2 function |
pcutoff |
Cut-off for p-value significance |
padj.method |
Can be any method available in |
filter_pairwise |
Logical whether adjusted p-value pairwise statistical tests are only conducted on genes which reach significant adjusted p-value cut-off on the group likelihood ratio test |
... |
Optional arguments passed to |
Value
Calls polar_coords
to return an S4 'volc3d' object
See Also
polar_coords
, voom_polar
,
DESeq
in the DESeq2 package
Examples
library(DESeq2)
counts <- matrix(rnbinom(n=1500, mu=100, size=1/0.5), ncol=15)
cond <- factor(rep(1:3, each=5), labels = c('A', 'B', 'C'))
# object construction
dds <- DESeqDataSetFromMatrix(counts, DataFrame(cond), ~ cond)
# standard analysis
dds <- DESeq(dds)
# Likelihood ratio test
ddsLRT <- DESeq(dds, test="LRT", reduced= ~ 1)
polar <- deseq_polar(dds, ddsLRT, "cond")
volcano3D(polar)
radial_ggplot(polar)