deseq_2x3 {volcano3D} | R Documentation |
2 x 3 factor DESeq2 analysis
Description
Experimental function for performing 2x3 factor DESeq2 analyses. Output can
be passed to deseq_2x3_polar()
and subsequently plotted. Example usage
would include comparing gene expression against a binary outcome e.g.
response vs non-response, across 3 drugs: the design would be ~ response
and group
would refer to the medication column in the metadata.
Usage
deseq_2x3(object, design, group, ...)
Arguments
object |
An object of class 'DESeqDataSet' containing full dataset |
design |
Design formula. The main contrast is taken from the last term of the formula and must be a binary factor. |
group |
Character value for the column with the 3-way grouping factor
within the sample information data |
... |
Optional arguments passed to |
Value
Returns a list of 3 DESeq2 results objects which can be passed onto
deseq_2x3_polar()
Examples
# Basic DESeq2 set up
library(DESeq2)
counts <- matrix(rnbinom(n=3000, mu=100, size=1/0.5), ncol=30)
rownames(counts) <- paste0("gene", 1:100)
cond <- rep(factor(rep(1:3, each=5), labels = c('A', 'B', 'C')), 2)
resp <- factor(rep(1:2, each=15), labels = c('non.responder', 'responder'))
metadata <- data.frame(drug = cond, response = resp)
# Full dataset object construction
dds <- DESeqDataSetFromMatrix(counts, metadata, ~response)
# Perform 3x DESeq2 analyses comparing binary response for each drug
res <- deseq_2x3(dds, ~response, "drug")
# Generate polar object
obj <- deseq_2x3_polar(res)
# 2d plot
radial_plotly(obj)
# 3d plot
volcano3D(obj)
[Package volcano3D version 2.0.9 Index]