plot.SVC_mle {varycoef} | R Documentation |
Plotting Residuals of SVC_mle
model
Description
Method to plot the residuals from an SVC_mle
object. For this, save.fitted
has to be TRUE
in
SVC_mle_control
.
Usage
## S3 method for class 'SVC_mle'
plot(x, which = 1:2, ...)
Arguments
x |
( |
which |
( |
... |
further arguments |
Value
a maximum 2 plots
Tukey-Anscombe plot, i.e. residuals vs. fitted
QQ-plot
Author(s)
Jakob Dambon
See Also
Examples
#' ## ---- toy example ----
## sample data
# setting seed for reproducibility
set.seed(123)
m <- 7
# number of observations
n <- m*m
# number of SVC
p <- 3
# sample data
y <- rnorm(n)
X <- matrix(rnorm(n*p), ncol = p)
# locations on a regular m-by-m-grid
locs <- expand.grid(seq(0, 1, length.out = m),
seq(0, 1, length.out = m))
## preparing for maximum likelihood estimation (MLE)
# controls specific to MLE
control <- SVC_mle_control(
# initial values of optimization
init = rep(0.1, 2*p+1),
# using profile likelihood
profileLik = TRUE
)
# controls specific to optimization procedure, see help(optim)
opt.control <- list(
# number of iterations (set to one for demonstration sake)
maxit = 1,
# tracing information
trace = 6
)
## starting MLE
fit <- SVC_mle(y = y, X = X, locs = locs,
control = control,
optim.control = opt.control)
## output: convergence code equal to 1, since maxit was only 1
summary(fit)
## plot residuals
# only QQ-plot
plot(fit, which = 2)
# two plots next to each other
oldpar <- par(mfrow = c(1, 2))
plot(fit)
par(oldpar)
[Package varycoef version 0.3.4 Index]