SVC_selection_control {varycoef} | R Documentation |
SVC Selection Parameters
Description
Function to set up control parameters for
SVC_selection
. The underlying Gaussian Process-based
SVC model is defined in SVC_mle
. SVC_selection
then jointly selects fixed and random effects of the GP-based
SVC model using a penalized maximum likelihood estimation (PMLE).
In this function, one can set the parameters for the PMLE and
its optimization procedures (Dambon et al., 2022).
Usage
SVC_selection_control(
IC.type = c("BIC", "cAIC_BW", "cAIC_VB"),
method = c("grid", "MBO"),
r.lambda = c(1e-10, 10),
n.lambda = 10L,
n.init = 10L,
n.iter = 10L,
CD.conv = list(N = 20L, delta = 1e-06, logLik = TRUE),
hessian = FALSE,
adaptive = FALSE,
parallel = NULL,
optim.args = list()
)
Arguments
IC.type |
( |
method |
( |
r.lambda |
( |
n.lambda |
( |
n.init |
( |
n.iter |
( |
CD.conv |
( |
hessian |
( |
adaptive |
( |
parallel |
( |
optim.args |
( |
Value
A list of control parameters for SVC selection.
Author(s)
Jakob Dambon
References
Bischl, B., Richter, J., Bossek, J., Horn, D., Thomas, J., Lang, M. (2017). mlrMBO: A Modular Framework for Model-Based Optimization of Expensive Black-Box Functions, ArXiv preprint https://arxiv.org/abs/1703.03373
Dambon, J. A., Sigrist, F., Furrer, R. (2022). Joint Variable Selection of both Fixed and Random Effects for Gaussian Process-based Spatially Varying Coefficient Models, International Journal of Geographical Information Science doi: 10.1080/13658816.2022.2097684
Examples
# Initializing parameters and switching logLik to FALSE
selection_control <- SVC_selection_control(
CD.conv = list(N = 20L, delta = 1e-06, logLik = FALSE)
)
# or
selection_control <- SVC_selection_control()
selection_control$CD.conv$logLik <- FALSE