approxWeights {varTestnlme}R Documentation

Monte Carlo approximation of chi-bar-square weights

Description

The chi-bar-square distribution χˉ2(I,C)\bar{\chi}^2(I,C) is a mixture of chi-square distributions. The function provides a method to approximate the weights of the mixture components, when the number of components is known as well as the degrees of freedom of each chi-square distribution in the mixture, and given a vector of simulated values from the target χˉ2(I,C)\bar{\chi}^2(I,C) distribution. Note that the estimation is based on (pseudo)-random Monte Carlo samples. For reproducible results, one should fix the seed of the (pseudo)-random number generator.

Usage

approxWeights(x, df, q)

Arguments

x

a vector of i.i.d. random realizations of the target chi-bar-square distribution

df

a vector containing the degrees of freedom of the chi-squared components

q

the empirical quantile of x used to choose the p2p-2 values c1,,cp2c_1, \dots, c_{p-2} (see Details)

Details

Let us assume that there are pp components in the mixture, with degrees of freedom between n1n_1 and npn_p. By definition of a mixture distribution, we have :

P(χˉ2(I,C)c)=i=n1npwiP(χi2c) P(\bar{\chi}^2(I,C) \leq c) = \sum_{i=n_1}^{n_p} w_i P(\chi^2_{i} \leq c)

Choosing p2p-2 values c1,,cp2c_1, \dots, c_{p-2}, the function will generate a system of p2p-2 equations according to the above relationship, and add two additional relationships stating that the sum of all the weights is equal to 1, and that the sum of odd weights and of even weights is equal to 1/2, so that we end up with a system a pp equations with pp variables.

Value

A vector containing the estimated weights, as well as their covariance matrix.

Author(s)

Charlotte Baey <charlotte.baey@univ-lille.fr>


[Package varTestnlme version 1.3.5 Index]