vicc {vICC} | R Documentation |
Varying Intraclass Correlation Coefficients
Description
Compute varying intraclass correlation coefficients with the method introduced in Williams et al. (2019).
Usage
vicc(
y,
group,
type = "pick_group",
iter = 5000,
chains = 2,
burnin = 500,
prior_scale = 1,
prior_prob = 0.5
)
Arguments
y |
Numeric vector. The outcome variable. |
group |
Numeric vector. The grouping variable (e.g., subjects). Note that the groups
must be numbered from 1 to the total number of groups.
See |
type |
Character string. Which model should be fitted
(defaults to |
iter |
Numeric. The number of posterior samples per chain (excluding |
chains |
Numeric. The number of chains (defaults to |
burnin |
Numeric. The number of burnin samples, which are discarded
(defaults to |
prior_scale |
Numeric. The prior distribution scale parameter
(defaults to |
prior_prob |
Numeric. The prior inclusion probability (defaults to |
Value
An object of class vicc
.
References
Williams DR, Martin SR, Rast P (2019). “Putting the Individual into Reliability: Bayesian Testing of Homogeneous Within-Person Variance in Hierarchical Models.” PsyArXiv.
Examples
# congruent trials
congruent <- subset(flanker, cond == 0)
# subset 25 from each group
dat <- congruent[unlist(tapply(1:nrow(congruent),
congruent$id,
head, 25)), ]
# fit model
fit <- vicc(y = dat$rt,
group = dat$id,
iter = 250,
burnin = 10,
type = "customary")