occuPEN {unmarked} | R Documentation |
Fit the MacKenzie et al. (2002) Occupancy Model with the penalized likelihood methods of Hutchinson et al. (2015)
Description
This function fits the occupancy model of MacKenzie et al (2002) with the penalized methods of Hutchinson et al (2015).
Usage
occuPEN(formula, data, knownOcc=numeric(0), starts, method="BFGS",
engine=c("C", "R"), lambda=0, pen.type = c("Bayes","Ridge","MPLE"), ...)
Arguments
formula |
Double right-hand side formula describing covariates of detection and occupancy in that order. |
data |
An |
knownOcc |
Vector of sites that are known to be occupied. These should be supplied as row numbers of the y matrix, eg, c(3,8) if sites 3 and 8 were known to be occupied a priori. |
starts |
Vector of parameter starting values. |
method |
Optimization method used by |
engine |
Either "C" or "R" to use fast C++ code or native R code during the optimization. |
lambda |
Penalty weight parameter. |
pen.type |
Which form of penalty to use. |
... |
Additional arguments to optim, such as lower and upper bounds |
Details
See unmarkedFrame
and unmarkedFrameOccu
for a
description of how to supply data to the data
argument.
occuPEN
fits the standard occupancy model based on
zero-inflated binomial models (MacKenzie et al. 2006, Royle and
Dorazio 2008) using the penalized likelihood methods described in
Hutchinson et al. (2015). See occu
for model
details. occuPEN
returns parameter estimates that maximize a
penalized likelihood in which the penalty is specified by the
pen.type
argument. The penalty function is weighted by
lambda
.
The MPLE method includes an equation for computing lambda
(Moreno & Lele, 2010). If the value supplied does not equal match the
one computed with this equation, the supplied value is used anyway
(with a warning).
Value
unmarkedFitOccuPEN object describing the model fit.
Author(s)
Rebecca A. Hutchinson
References
Hutchinson, R. A., J. V. Valente, S. C. Emerson, M. G. Betts, and T. G. Dietterich. 2015. Penalized Likelihood Methods Improve Parameter Estimates in Occupancy Models. Methods in Ecology and Evolution. DOI: 10.1111/2041-210X.12368
MacKenzie, D. I., J. D. Nichols, G. B. Lachman, S. Droege, J. Andrew Royle, and C. A. Langtimm. 2002. Estimating Site Occupancy Rates When Detection Probabilities Are Less Than One. Ecology 83: 2248-2255.
MacKenzie, D. I. et al. 2006. Occupancy Estimation and Modeling. Amsterdam: Academic Press.
Moreno, M. and S. R. Lele. 2010. Improved estimation of site occupancy using penalized likelihood. Ecology 91: 341-346.
Royle, J. A. and R. Dorazio. 2008. Hierarchical Modeling and Inference in Ecology. Academic Press.
See Also
unmarked
, unmarkedFrameOccu
,
occu
, computeMPLElambda
,
occuPEN_CV
, nonparboot
Examples
# Simulate occupancy data
set.seed(344)
nSites <- 100
nReps <- 2
covariates <- data.frame(veght=rnorm(nSites),
habitat=factor(c(rep('A', nSites/2), rep('B', nSites/2))))
psipars <- c(-1, 1, -1)
ppars <- c(1, -1, 0)
X <- model.matrix(~veght+habitat, covariates) # design matrix
psi <- plogis(X %*% psipars)
p <- plogis(X %*% ppars)
y <- matrix(NA, nSites, nReps)
z <- rbinom(nSites, 1, psi) # true occupancy state
for(i in 1:nSites) {
y[i,] <- rbinom(nReps, 1, z[i]*p[i])
}
# Organize data and look at it
umf <- unmarkedFrameOccu(y = y, siteCovs = covariates)
obsCovs(umf) <- covariates
head(umf)
summary(umf)
# Fit some models
fmMLE <- occu(~veght+habitat ~veght+habitat, umf)
fm1pen <- occuPEN(~veght+habitat ~veght+habitat, umf,lambda=0.33,pen.type="Ridge")
fm2pen <- occuPEN(~veght+habitat ~veght+habitat, umf,lambda=1,pen.type="Bayes")
# MPLE:
fm3pen <- occuPEN(~veght+habitat ~veght+habitat, umf,lambda=0.5,pen.type="MPLE")
MPLElambda = computeMPLElambda(~veght+habitat ~veght+habitat, umf)
fm4pen <- occuPEN(~veght+habitat ~veght+habitat, umf,lambda=MPLElambda,pen.type="MPLE")
# nonparametric bootstrap for uncertainty analysis:
fm1pen <- nonparboot(fm1pen,B=20) # should use more samples
vcov(fm1pen,method="nonparboot")