distsamp {unmarked} | R Documentation |
Fit the hierarchical distance sampling model of Royle et al. (2004)
Description
Fit the hierarchical distance sampling model of Royle et al. (2004) to line or point transect data recorded in discrete distance intervals.
Usage
distsamp(formula, data, keyfun=c("halfnorm", "exp",
"hazard", "uniform"), output=c("density", "abund"),
unitsOut=c("ha", "kmsq"), starts, method="BFGS", se=TRUE,
engine=c("C", "R", "TMB"), rel.tol=0.001, ...)
Arguments
formula |
Double right-hand formula describing detection covariates followed by abundance covariates. ~1 ~1 would be a null model. |
data |
object of class |
keyfun |
One of the following detection functions: "halfnorm", "hazard", "exp", or "uniform." See details. |
output |
Model either "density" or "abund" |
unitsOut |
Units of density. Either "ha" or "kmsq" for hectares and square kilometers, respectively. |
starts |
Vector of starting values for parameters. |
method |
Optimization method used by |
se |
logical specifying whether or not to compute standard errors. |
engine |
Use code written in C++ or R |
rel.tol |
Requested relative accuracy of the integral, see
|
... |
Additional arguments to optim, such as lower and upper bounds |
Details
Unlike conventional distance sampling, which uses the 'conditional on detection' likelihood formulation, this model is based upon the unconditional likelihood and allows for modeling both abundance and detection function parameters.
The latent transect-level abundance distribution
f(N | \mathbf{\theta})
assumed to be
Poisson with mean \lambda
(but see gdistsamp
for alternatives).
The detection process is modeled as multinomial:
y_{ij} \sim Multinomial(N_i, \pi_{ij})
,
where \pi_{ij}
is the multinomial cell probability for transect i in
distance class j. These are computed based upon a detection function
g(x | \mathbf{\sigma})
, such as the half-normal,
negative exponential, or hazard rate.
Parameters \lambda
and \sigma
can be vectors
affected by transect-specific covariates using the log link.
Value
unmarkedFitDS object (child class of unmarkedFit-class
)
describing the model fit.
Note
You cannot use obsCovs.
Author(s)
Richard Chandler rbchan@uga.edu
References
Royle, J. A., D. K. Dawson, and S. Bates (2004) Modeling abundance effects in distance sampling. Ecology 85, pp. 1591-1597.
Sillett, S. and Chandler, R.B. and Royle, J.A. and Kery, M. and Morrison, S.A. In Press. Hierarchical distance sampling models to estimate population size and habitat-specific abundance of an island endemic. Ecological Applications
See Also
unmarkedFrameDS
,
unmarkedFit-class
fitList
,
formatDistData
, parboot
,
sight2perpdist
, detFuns
,
gdistsamp
, ranef
.
Also look at vignette("distsamp").
Examples
## Line transect examples
data(linetran)
ltUMF <- with(linetran, {
unmarkedFrameDS(y = cbind(dc1, dc2, dc3, dc4),
siteCovs = data.frame(Length, area, habitat),
dist.breaks = c(0, 5, 10, 15, 20),
tlength = linetran$Length * 1000, survey = "line", unitsIn = "m")
})
ltUMF
summary(ltUMF)
hist(ltUMF)
# Half-normal detection function. Density output (log scale). No covariates.
(fm1 <- distsamp(~ 1 ~ 1, ltUMF))
# Some methods to use on fitted model
summary(fm1)
backTransform(fm1, type="state") # animals / ha
exp(coef(fm1, type="state", altNames=TRUE)) # same
backTransform(fm1, type="det") # half-normal SD
hist(fm1, xlab="Distance (m)") # Only works when there are no det covars
# Empirical Bayes estimates of posterior distribution for N_i
plot(ranef(fm1, K=50))
# Effective strip half-width
(eshw <- integrate(gxhn, 0, 20, sigma=10.9)$value)
# Detection probability
eshw / 20 # 20 is strip-width
# Halfnormal. Covariates affecting both density and and detection.
(fm2 <- distsamp(~area + habitat ~ habitat, ltUMF))
# Hazard-rate detection function.
(fm3 <- distsamp(~ 1 ~ 1, ltUMF, keyfun="hazard"))
# Plot detection function.
fmhz.shape <- exp(coef(fm3, type="det"))
fmhz.scale <- exp(coef(fm3, type="scale"))
plot(function(x) gxhaz(x, shape=fmhz.shape, scale=fmhz.scale), 0, 25,
xlab="Distance (m)", ylab="Detection probability")
## Point transect examples
# Analysis of the Island Scrub-jay data.
# See Sillett et al. (In press)
data(issj)
str(issj)
jayumf <- unmarkedFrameDS(y=as.matrix(issj[,1:3]),
siteCovs=data.frame(scale(issj[,c("elevation","forest","chaparral")])),
dist.breaks=c(0,100,200,300), unitsIn="m", survey="point")
(fm1jay <- distsamp(~chaparral ~chaparral, jayumf))
## Not run:
data(pointtran)
ptUMF <- with(pointtran, {
unmarkedFrameDS(y = cbind(dc1, dc2, dc3, dc4, dc5),
siteCovs = data.frame(area, habitat),
dist.breaks = seq(0, 25, by=5), survey = "point", unitsIn = "m")
})
# Half-normal.
(fmp1 <- distsamp(~ 1 ~ 1, ptUMF))
hist(fmp1, ylim=c(0, 0.07), xlab="Distance (m)")
# effective radius
sig <- exp(coef(fmp1, type="det"))
ea <- 2*pi * integrate(grhn, 0, 25, sigma=sig)$value # effective area
sqrt(ea / pi) # effective radius
# detection probability
ea / (pi*25^2)
## End(Not run)