stan_occuRN {ubms} | R Documentation |
Fit the Occupancy Model of Royle and Nichols (2003)
Description
Fit the occupancy model of Royle and Nichols (2003), which relates probability of detection of the species to the number of individuals available for detection at each site.
Usage
stan_occuRN(
formula,
data,
K = 20,
prior_intercept_state = normal(0, 5),
prior_coef_state = normal(0, 2.5),
prior_intercept_det = logistic(0, 1),
prior_coef_det = logistic(0, 1),
prior_sigma = gamma(1, 1),
log_lik = TRUE,
...
)
Arguments
formula |
Double right-hand side formula describing covariates of detection and abundance in that order |
data |
A |
K |
Integer upper index of integration for N-mixture. This should be set high enough so that it does not affect the parameter estimates. Note that computation time will increase with K. |
prior_intercept_state |
Prior distribution for the intercept of the
state (abundance) model; see |
prior_coef_state |
Prior distribution for the regression coefficients of the state model |
prior_intercept_det |
Prior distribution for the intercept of the detection probability model |
prior_coef_det |
Prior distribution for the regression coefficients of the detection model |
prior_sigma |
Prior distribution on random effect standard deviations |
log_lik |
If |
... |
Arguments passed to the |
Value
ubmsFitOccuRN
object describing the model fit.
References
Royle JA, Nichols JD. 2003. Estimating abundance from repeated presence-absence data or point counts. Ecology 84: 777-790.
See Also
Examples
data(birds)
woodthrushUMF <- unmarkedFrameOccu(woodthrush.bin)
#Add a site covariate
siteCovs(woodthrushUMF) <- data.frame(cov1=rnorm(numSites(woodthrushUMF)))
(fm_wood <- stan_occuRN(~1~cov1, woodthrushUMF, chains=3, iter=300))