stan_colext {ubms} | R Documentation |
Fit the MacKenzie et al. (2003) Dynamic Occupancy Model
Description
This function fits the dynamic occupancy model of MacKenzie et al. (2003).
Usage
stan_colext(
psiformula = ~1,
gammaformula = ~1,
epsilonformula = ~1,
pformula = ~1,
data,
prior_intercept_psi = logistic(0, 1),
prior_coef_psi = logistic(0, 1),
prior_intercept_gamma = logistic(0, 1),
prior_coef_gamma = logistic(0, 1),
prior_intercept_eps = logistic(0, 1),
prior_coef_eps = logistic(0, 1),
prior_intercept_det = logistic(0, 1),
prior_coef_det = logistic(0, 1),
prior_sigma = gamma(1, 1),
log_lik = TRUE,
...
)
Arguments
psiformula |
Right-hand sided formula for the initial probability of occupancy at each site |
gammaformula |
Right-hand sided formula for colonization probability |
epsilonformula |
Right-hand sided formula for extinction probability |
pformula |
Right-hand sided formula for detection probability |
data |
A |
prior_intercept_psi |
Prior distribution for the intercept of the
psi (initial occupancy probability) model; see |
prior_coef_psi |
Prior distribution for the regression coefficients of the psi model |
prior_intercept_gamma |
Prior distribution on intercept for colonization probability |
prior_coef_gamma |
Prior distribution on regression coefficients for colonization probability |
prior_intercept_eps |
Prior distribution on intercept for extinction probability |
prior_coef_eps |
Prior distribution on regression coefficients for extinction probability |
prior_intercept_det |
Prior distribution for the intercept of the detection probability model |
prior_coef_det |
Prior distribution for the regression coefficients of the detection model |
prior_sigma |
Prior distribution on random effect standard deviations |
log_lik |
If |
... |
Arguments passed to the |
Value
ubmsFitColext
object describing the model fit.
References
MacKenzie DI, Nicholas JD, Hines JE, Knutson MG, Franklin AB. 2003. Ecology 84: 2200-2207.
See Also
Examples
data(frogs)
umf <- formatMult(masspcru)
umf@y[umf@y > 1] <- 1 #convert counts to presence/absence
umf <- umf[1:100,] #Use only 100 sites
fit_frog <- stan_colext(~1, ~1, ~1, ~1, umf, chains=3, iter=300)