| quantile_residuals {uGMAR} | R Documentation | 
Compute quantile residuals of GMAR, StMAR, or G-StMAR model
Description
quantile_residuals computes the quantile residuals of the specified GMAR, StMAR, or G-StMAR model.
Usage
quantile_residuals(
  data,
  p,
  M,
  params,
  model = c("GMAR", "StMAR", "G-StMAR"),
  restricted = FALSE,
  constraints = NULL,
  parametrization = c("intercept", "mean")
)
Arguments
| data | a numeric vector or class  | 
| p | a positive integer specifying the autoregressive order of the model. | 
| M | 
 | 
| params | a real valued parameter vector specifying the model. 
 Symbol  | 
| model | is "GMAR", "StMAR", or "G-StMAR" model considered? In the G-StMAR model, the first  | 
| restricted | a logical argument stating whether the AR coefficients  | 
| constraints | specifies linear constraints imposed to each regime's autoregressive parameters separately. 
 The symbol  | 
| parametrization | is the model parametrized with the "intercepts"  | 
Details
Numerical integration is employed if the quantile residuals cannot be obtained analytically with the hypergeometric function using the package 'gsl'.
Value
Returns a (Tx1) numeric vector containing the quantile residuals of the specified GMAR, StMAR or G-StMAR model.
Note that there are no quantile residuals for the first p observations as they are the initial values.
References
- Galbraith, R., Galbraith, J. 1974. On the inverses of some patterned matrices arising in the theory of stationary time series. Journal of Applied Probability 11, 63-71. 
- Kalliovirta L. (2012) Misspecification tests based on quantile residuals. The Econometrics Journal, 15, 358-393. 
- Kalliovirta L., Meitz M. and Saikkonen P. 2015. Gaussian Mixture Autoregressive model for univariate time series. Journal of Time Series Analysis, 36(2), 247-266. 
- Meitz M., Preve D., Saikkonen P. 2023. A mixture autoregressive model based on Student's t-distribution. Communications in Statistics - Theory and Methods, 52(2), 499-515. 
- Virolainen S. 2022. A mixture autoregressive model based on Gaussian and Student's t-distributions. Studies in Nonlinear Dynamics & Econometrics, 26(4) 559-580. 
Examples
# GMAR model
params12 <- c(1.70, 0.85, 0.30, 4.12, 0.73, 1.98, 0.63)
quantile_residuals(simudata, p=1, M=2, params=params12, model="GMAR")
# G-StMAR-model
params42gs <- c(0.04, 1.34, -0.59, 0.54, -0.36, 0.01, 0.06, 1.28, -0.36,
                0.2, -0.15, 0.04, 0.19, 9.75)
quantile_residuals(M10Y1Y, p=4, M=c(1, 1), params=params42gs, model="G-StMAR")