entropy {tsfeatures} | R Documentation |
Spectral entropy of a time series
Description
Computes spectral entropy from a univariate normalized spectral density, estimated using an AR model.
Usage
entropy(x)
Arguments
x |
a univariate time series |
Details
The spectral entropy equals the Shannon entropy of the spectral density
f_x(\lambda)
of a stationary process x_t
:
H_s(x_t) = - \int_{-\pi}^{\pi} f_x(\lambda) \log f_x(\lambda) d \lambda,
where the density is normalized such that
\int_{-\pi}^{\pi} f_x(\lambda) d \lambda = 1
.
An estimate of f(\lambda)
can be obtained using spec.ar
with
the burg
method.
Value
A non-negative real value for the spectral entropy H_s(x_t)
.
Author(s)
Rob J Hyndman
References
Jerry D. Gibson and Jaewoo Jung (2006). “The Interpretation of Spectral Entropy Based Upon Rate Distortion Functions”. IEEE International Symposium on Information Theory, pp. 277-281.
Goerg, G. M. (2013). “Forecastable Component Analysis”. Proceedings of the 30th International Conference on Machine Learning (PMLR) 28 (2): 64-72, 2013. Available at https://proceedings.mlr.press/v28/goerg13.html.
See Also
Examples
entropy(rnorm(1000))
entropy(lynx)
entropy(sin(1:20))