| TrajsMergeStats {trajr} | R Documentation | 
Merge trajectory characteristics
Description
Builds a data frame by combining rows of statistical values for multiple trajectories. The statistics for each trajectory are defined by the caller in a user defined function - see the example for one way to achieve this.
Usage
TrajsMergeStats(
  trjs,
  statsFn,
  progressBar = c("none", "text", "win", "tk"),
  check.names = TRUE,
  ...
)
Arguments
| trjs | List of trajectories to be characterised. | 
| statsFn | Function to calculate statistics of interest for a single trajectory. | 
| progressBar | Displays an optional progressbar, which may be helpful if
processing is very slow. The progressbar is displayed by printing to the
console, by using  | 
| check.names | Passed to  | 
| ... | Additional arguments passed to  | 
Note
Any NULL valued statistics are converted to NAs.
Examples
## Not run: 
# Define a function which calculates some statistics
# of interest for a single trajectory
characteriseTrajectory <- function(trj) {
  # Measures of speed
  derivs <- TrajDerivatives(trj)
  mean_speed <- mean(derivs$speed)
  sd_speed <- sd(derivs$speed)
  # Resample to constant step length.
  # Step length must be appropriate for the trajectory
  resampled <- TrajRediscretize(trj, 2)
  # Measures of straightness
  sinuosity <- TrajSinuosity2(resampled)
  Emax <- TrajEmax(resampled)
  # Periodicity
  resampled <- TrajRediscretize(trj, .001)
  corr <- TrajDirectionAutocorrelations(resampled, round(nrow(resampled) / 4))
  first_min <- TrajDAFindFirstMinimum(corr)
  # Return a list with all of the statistics for this trajectory
  list(mean_speed = mean_speed,
       sd_speed = sd_speed,
       sinuosity = sinuosity,
       Emax = Emax,
       first_min_deltaS = first_min[1],
       first_min_C = first_min[2])
}
trjs <- TrajsBuild(filenames)
stats <- TrajsMergeStats(trjs, characteriseTrajectory)
## End(Not run)