| model_vgg {torchvision} | R Documentation |
VGG implementation
Description
VGG models implementations based on Very Deep Convolutional Networks For Large-Scale Image Recognition
Usage
model_vgg11(pretrained = FALSE, progress = TRUE, ...)
model_vgg11_bn(pretrained = FALSE, progress = TRUE, ...)
model_vgg13(pretrained = FALSE, progress = TRUE, ...)
model_vgg13_bn(pretrained = FALSE, progress = TRUE, ...)
model_vgg16(pretrained = FALSE, progress = TRUE, ...)
model_vgg16_bn(pretrained = FALSE, progress = TRUE, ...)
model_vgg19(pretrained = FALSE, progress = TRUE, ...)
model_vgg19_bn(pretrained = FALSE, progress = TRUE, ...)
Arguments
pretrained |
(bool): If TRUE, returns a model pre-trained on ImageNet |
progress |
(bool): If TRUE, displays a progress bar of the download to stderr |
... |
other parameters passed to the VGG model implementation. |
Functions
-
model_vgg11(): VGG 11-layer model (configuration "A") -
model_vgg11_bn(): VGG 11-layer model (configuration "A") with batch normalization -
model_vgg13(): VGG 13-layer model (configuration "B") -
model_vgg13_bn(): VGG 13-layer model (configuration "B") with batch normalization -
model_vgg16(): VGG 13-layer model (configuration "D") -
model_vgg16_bn(): VGG 13-layer model (configuration "D") with batch normalization -
model_vgg19(): VGG 19-layer model (configuration "E") -
model_vgg19_bn(): VGG 19-layer model (configuration "E") with batch normalization