| model_resnet {torchvision} | R Documentation |
ResNet implementation
Description
ResNet models implementation from Deep Residual Learning for Image Recognition and later related papers (see Functions)
Usage
model_resnet18(pretrained = FALSE, progress = TRUE, ...)
model_resnet34(pretrained = FALSE, progress = TRUE, ...)
model_resnet50(pretrained = FALSE, progress = TRUE, ...)
model_resnet101(pretrained = FALSE, progress = TRUE, ...)
model_resnet152(pretrained = FALSE, progress = TRUE, ...)
model_resnext50_32x4d(pretrained = FALSE, progress = TRUE, ...)
model_resnext101_32x8d(pretrained = FALSE, progress = TRUE, ...)
model_wide_resnet50_2(pretrained = FALSE, progress = TRUE, ...)
model_wide_resnet101_2(pretrained = FALSE, progress = TRUE, ...)
Arguments
pretrained |
(bool): If TRUE, returns a model pre-trained on ImageNet. |
progress |
(bool): If TRUE, displays a progress bar of the download to stderr. |
... |
Other parameters passed to the resnet model. |
Functions
-
model_resnet18(): ResNet 18-layer model -
model_resnet34(): ResNet 34-layer model -
model_resnet50(): ResNet 50-layer model -
model_resnet101(): ResNet 101-layer model -
model_resnet152(): ResNet 152-layer model -
model_resnext50_32x4d(): ResNeXt-50 32x4d model from "Aggregated Residual Transformation for Deep Neural Networks" with 32 groups having each a width of 4. -
model_resnext101_32x8d(): ResNeXt-101 32x8d model from "Aggregated Residual Transformation for Deep Neural Networks" with 32 groups having each a width of 8. -
model_wide_resnet50_2(): Wide ResNet-50-2 model from "Wide Residual Networks" with width per group of 128. -
model_wide_resnet101_2(): Wide ResNet-101-2 model from "Wide Residual Networks" with width per group of 128.
See Also
Other models:
model_alexnet(),
model_mobilenet_v2()