lines.PerformanceUplift {tools4uplift} | R Documentation |
Qini curve
Description
Curve of the function Qini, the incremental observed uplift with respect to predicted uplift sorted from the highest to the lowest.
Usage
## S3 method for class 'PerformanceUplift'
lines(x, ...)
Arguments
x |
a table that must be the output of |
... |
additional plot arguments. |
Value
a Qini curve and the associated Qini coefficient
Author(s)
Mouloud Belbahri
References
Radcliffe, N. (2007). Using control groups to target on predicted lift: Building and assessing uplift models. Direct Marketing Analytics Journal, An Annual Publication from the Direct Marketing Association Analytics Council, pages 14-21.
Belbahri, M., Murua, A., Gandouet, O., and Partovi Nia, V. (2019) Uplift Regression, <https://dms.umontreal.ca/~murua/research/UpliftRegression.pdf>
See Also
PerformanceUplift
Examples
library(tools4uplift)
data("SimUplift")
model1 <- BinUplift2d(SimUplift, "X1", "X2", "treat", "y")
perf1 <- PerformanceUplift(data = model1, treat = "treat",
outcome = "y", prediction = "Uplift_X1_X2",
equal.intervals = TRUE, nb.group = 3)
model2 <- BinUplift2d(SimUplift, "X3", "X4", "treat", "y")
perf2 <- PerformanceUplift(data = model2, treat = "treat",
outcome = "y", prediction = "Uplift_X3_X4",
equal.intervals = TRUE, nb.group = 3)
plot(perf1, type='b')
lines(perf2, type='b', col='red')
[Package tools4uplift version 1.0.0 Index]