weighted_richclub_w {tnet}R Documentation

The weighted rich-club effect

Description

This function calculates the weighted rich-club coefficient proposed in Opsahl, T., Colizza, V., Panzarasa, P., Ramasco, J.J., 2008. Prominence and control: The weighted rich-club effect. PRL 101.
http://toreopsahl.com/2008/12/12/article-prominence-and-control-the-weighted-rich-club-effect/

Usage

weighted_richclub_w(net, rich="k", reshuffle="weights", NR=1000, 
nbins=30, seed=NULL, directed=NULL)

Arguments

net

A weighted edgelist

rich

specifies the richness parameter, either "k" or "s".

reshuffle

specifies the reshuffling procedure used, either "weights" or "links".

NR

number of random networks used.

nbins

the number of bins in the output

seed

the random generators seed, used to produce random yet reproducable results.

directed

logical parameter: whether the network is directed or undirected.

Value

Returns a table with the fraction of phi(observed) over phi(null) for each k or s in the dataset.

Note

version 1.0.0

Author(s)

Tore Opsahl; http://toreopsahl.com

References

Opsahl et al., 2008. Prominence and control: The weighted rich-club effect. PRL 101
http://toreopsahl.com/2008/12/12/article-prominence-and-control-the-weighted-rich-club-effect/

Examples

## Load sample data
sample <- cbind(
i=c(1,1,2,2,2,2,3,3,4,5),
j=c(2,3,1,3,4,5,1,2,2,2),
w=c(4,2,4,4,1,2,2,4,1,2))

## Run the function
weighted_richclub_w(sample, rich="k", reshuffle="weights", NR = 100)


[Package tnet version 3.0.16 Index]