r_value {tipr} | R Documentation |
Robustness value
Description
This function wraps the sensemakr::robustness_value()
function
Usage
r_value(effect_observed, se, df, ...)
Arguments
effect_observed |
Numeric. Observed exposure - outcome effect from a regression model. This is the point estimate (beta coefficient) |
se |
Numeric. Standard error of the |
df |
Numeric positive value. Residual degrees of freedom for the model used to estimate the observed exposure - outcome effect. This is the total number of observations minus the number of parameters estimated in your model. Often for models estimated with an intercept this is N - k - 1 where k is the number of predictors in the model. |
... |
Optional arguments passed to the |
Value
Numeric. Robustness value
References
Carlos Cinelli, Jeremy Ferwerda and Chad Hazlett (2021). sensemakr: Sensitivity Analysis Tools for Regression Models. R package version 0.1.4. https://CRAN.R-project.org/package=sensemakr
Examples
r_value(0.5, 0.1, 102)