restricted.residual.mean {timereg} | R Documentation |
Estimates restricted residual mean for Cox or Aalen model
Description
The restricted means are the
\int_0^\tau S(t) dt
the standard errors are computed using the i.i.d. decompositions from the cox.aalen (that must be called with the argument "max.timpoint.sim=NULL") or aalen function.
Usage
restricted.residual.mean(out, x = 0, tau = 10, iid = 0)
Arguments
out |
an "cox.aalen" with a Cox model or an "aalen" model. |
x |
matrix with covariates for Cox model or additive hazards model (aalen). |
tau |
restricted residual mean. |
iid |
if iid=1 then uses iid decomposition for estimation of standard errors. |
Details
must have computed iid decomposition of survival models for standard errors to be computed. Note that competing risks models can be fitted but then the interpretation is not clear.
Value
Returns an object. With the following arguments:
mean |
restricted mean for different covariates. |
var.mean |
variance matrix. |
se |
standard errors. |
S0tau |
estimated survival functions on time-range [0,tau]. |
timetau |
vector of time arguments for S0tau. |
Author(s)
Thomas Scheike
References
D. M. Zucker, Restricted mean life with covariates: Modification and extension of a useful survival analysis method, J. Amer. Statist. Assoc. vol. 93 pp. 702-709, 1998.
Martinussen and Scheike, Dynamic Regression Models for Survival Data, Springer (2006).
Examples
### this example runs slowly and is therefore donttest
data(sTRACE)
sTRACE$cage <- scale(sTRACE$age)
# Fits Cox model and aalen model
out<-cox.aalen(Surv(time,status>=1)~prop(sex)+prop(diabetes)+prop(chf)+
prop(vf),data=sTRACE,max.timepoint.sim=NULL,resample.iid=1)
outa<-aalen(Surv(time,status>=1)~sex+diabetes+chf+vf,
data=sTRACE,resample.iid=1)
coxrm <- restricted.residual.mean(out,tau=7,
x=rbind(c(0,0,0,0),c(0,0,1,0),c(0,0,1,1),c(0,0,0,1)),iid=1)
plot(coxrm)
summary(coxrm)
### aalen model not optimal here
aalenrm <- restricted.residual.mean(outa,tau=7,
x=rbind(c(1,0,0,0,0),c(1,0,0,1,0),c(1,0,0,1,1),c(1,0,0,0,1)),iid=1)
with(aalenrm,matlines(timetau,S0tau,type="s",ylim=c(0,1)))
legend("bottomleft",c("baseline","+chf","+chf+vf","+vf"),col=1:4,lty=1)
summary(aalenrm)
mm <-cbind(coxrm$mean,coxrm$se,aalenrm$mean,aalenrm$se)
colnames(mm)<-c("cox-res-mean","se","aalen-res-mean","se")
rownames(mm)<-c("baseline","+chf","+chf+vf","+vf")
mm