prep.comp.risk {timereg} | R Documentation |
Set up weights for delayed-entry competing risks data for comp.risk function
Description
Computes the weights of Geskus (2011) modified to the setting of the
comp.risk function. The returned weights are
and tau is the max of the times argument,
here
is the estimator of the truncation distribution and
is the right censoring distribution.
Usage
prep.comp.risk(
data,
times = NULL,
entrytime = NULL,
time = "time",
cause = "cause",
cname = "cweight",
tname = "tweight",
strata = NULL,
nocens.out = TRUE,
cens.formula = NULL,
cens.code = 0,
prec.factor = 100,
trunc.mintau = FALSE
)
Arguments
data |
data frame for comp.risk. |
times |
times for estimating equations. |
entrytime |
name of delayed entry variable, if not given computes right-censoring case. |
time |
name of survival time variable. |
cause |
name of cause indicator |
cname |
name of censoring weight. |
tname |
name of truncation weight. |
strata |
strata variable to obtain stratified weights. |
nocens.out |
returns only uncensored part of data-frame |
cens.formula |
censoring model formula for Cox models for the truncation and censoring model. |
cens.code |
code for censoring among causes. |
prec.factor |
precision factor, for ties between censoring/even times, truncation times/event times |
trunc.mintau |
specicies wether the truncation distribution is evaluated in death times or death times minimum max(times), FALSE makes the estimator equivalent to Kaplan-Meier (in the no covariate case). |
Value
Returns an object. With the following arguments:
dataw |
a data.frame with weights. |
The function wants to make two new variables "weights" and "cw" so if these already are in the data frame it tries to add an "_" in the names.
Author(s)
Thomas Scheike
References
Geskus (2011), Cause-Specific Cumulative Incidence Estimation and the Fine and Gray Model Under Both Left Truncation and Right Censoring, Biometrics (2011), pp 39-49.
Shen (2011), Proportional subdistribution hazards regression for left-truncated competing risks data, Journal of Nonparametric Statistics (2011), 23, 885-895
Examples
data(bmt)
nn <- nrow(bmt)
entrytime <- rbinom(nn,1,0.5)*(bmt$time*runif(nn))
bmt$entrytime <- entrytime
times <- seq(5,70,by=1)
### adds weights to uncensored observations
bmtw <- prep.comp.risk(bmt,times=times,time="time",
entrytime="entrytime",cause="cause")
#########################################
### nonparametric estimates
#########################################
## {{{
### nonparametric estimates, right-censoring only
out <- comp.risk(Event(time,cause)~+1,data=bmt,
cause=1,model="rcif2",
times=c(5,30,70),n.sim=0)
out$cum
### same as
###out <- prodlim(Hist(time,cause)~+1,data=bmt)
###summary(out,cause="1",times=c(5,30,70))
### with truncation
out <- comp.risk(Event(time,cause)~+1,data=bmtw,cause=1,
model="rcif2",
cens.weight=bmtw$cw,weights=bmtw$weights,times=c(5,30,70),
n.sim=0)
out$cum
### same as
###out <- prodlim(Hist(entry=entrytime,time,cause)~+1,data=bmt)
###summary(out,cause="1",times=c(5,30,70))
## }}}
#########################################
### Regression
#########################################
## {{{
### with truncation correction
out <- comp.risk(Event(time,cause)~const(tcell)+const(platelet),data=bmtw,
cause=1,cens.weight=bmtw$cw,
weights=bmtw$weights,times=times,n.sim=0)
summary(out)
### with only righ-censoring, standard call
outn <- comp.risk(Event(time,cause)~const(tcell)+const(platelet),data=bmt,
cause=1,times=times,n.sim=0)
summary(outn)
## }}}