prep.comp.risk {timereg} | R Documentation |
Set up weights for delayed-entry competing risks data for comp.risk function
Description
Computes the weights of Geskus (2011) modified to the setting of the
comp.risk function. The returned weights are
1/(H(T_i)*G_c(min(T_i,tau)))
and tau is the max of the times argument,
here H
is the estimator of the truncation distribution and G_c
is the right censoring distribution.
Usage
prep.comp.risk(
data,
times = NULL,
entrytime = NULL,
time = "time",
cause = "cause",
cname = "cweight",
tname = "tweight",
strata = NULL,
nocens.out = TRUE,
cens.formula = NULL,
cens.code = 0,
prec.factor = 100,
trunc.mintau = FALSE
)
Arguments
data |
data frame for comp.risk. |
times |
times for estimating equations. |
entrytime |
name of delayed entry variable, if not given computes right-censoring case. |
time |
name of survival time variable. |
cause |
name of cause indicator |
cname |
name of censoring weight. |
tname |
name of truncation weight. |
strata |
strata variable to obtain stratified weights. |
nocens.out |
returns only uncensored part of data-frame |
cens.formula |
censoring model formula for Cox models for the truncation and censoring model. |
cens.code |
code for censoring among causes. |
prec.factor |
precision factor, for ties between censoring/even times, truncation times/event times |
trunc.mintau |
specicies wether the truncation distribution is evaluated in death times or death times minimum max(times), FALSE makes the estimator equivalent to Kaplan-Meier (in the no covariate case). |
Value
Returns an object. With the following arguments:
dataw |
a data.frame with weights. |
The function wants to make two new variables "weights" and "cw" so if these already are in the data frame it tries to add an "_" in the names.
Author(s)
Thomas Scheike
References
Geskus (2011), Cause-Specific Cumulative Incidence Estimation and the Fine and Gray Model Under Both Left Truncation and Right Censoring, Biometrics (2011), pp 39-49.
Shen (2011), Proportional subdistribution hazards regression for left-truncated competing risks data, Journal of Nonparametric Statistics (2011), 23, 885-895
Examples
data(bmt)
nn <- nrow(bmt)
entrytime <- rbinom(nn,1,0.5)*(bmt$time*runif(nn))
bmt$entrytime <- entrytime
times <- seq(5,70,by=1)
### adds weights to uncensored observations
bmtw <- prep.comp.risk(bmt,times=times,time="time",
entrytime="entrytime",cause="cause")
#########################################
### nonparametric estimates
#########################################
## {{{
### nonparametric estimates, right-censoring only
out <- comp.risk(Event(time,cause)~+1,data=bmt,
cause=1,model="rcif2",
times=c(5,30,70),n.sim=0)
out$cum
### same as
###out <- prodlim(Hist(time,cause)~+1,data=bmt)
###summary(out,cause="1",times=c(5,30,70))
### with truncation
out <- comp.risk(Event(time,cause)~+1,data=bmtw,cause=1,
model="rcif2",
cens.weight=bmtw$cw,weights=bmtw$weights,times=c(5,30,70),
n.sim=0)
out$cum
### same as
###out <- prodlim(Hist(entry=entrytime,time,cause)~+1,data=bmt)
###summary(out,cause="1",times=c(5,30,70))
## }}}
#########################################
### Regression
#########################################
## {{{
### with truncation correction
out <- comp.risk(Event(time,cause)~const(tcell)+const(platelet),data=bmtw,
cause=1,cens.weight=bmtw$cw,
weights=bmtw$weights,times=times,n.sim=0)
summary(out)
### with only righ-censoring, standard call
outn <- comp.risk(Event(time,cause)~const(tcell)+const(platelet),data=bmt,
cause=1,times=times,n.sim=0)
summary(outn)
## }}}