extrapol_mess {tidysdm} | R Documentation |
Multivariate environmental similarity surfaces (MESS)
Description
Compute multivariate environmental similarity surfaces (MESS), as described by Elith et al., 2010.
Usage
extrapol_mess(x, training, .col, ...)
## Default S3 method:
extrapol_mess(x, training, ...)
## S3 method for class 'SpatRaster'
extrapol_mess(x, training, .col, filename = "", ...)
## S3 method for class 'data.frame'
extrapol_mess(x, training, .col, ...)
## S3 method for class 'SpatRasterDataset'
extrapol_mess(x, training, .col, ...)
Arguments
x |
|
training |
matrix or data.frame or sf object containing the reference values; each column
should correspond to one layer of the |
.col |
the column containing the presences (optional). If specified, it is excluded when computing the MESS scores. |
... |
additional arguments as for |
filename |
character. Output filename (optional) |
Details
This function is a modified version of mess
in
package predicts
, with a method added to work on terra::SpatRasterDataset
.
Note that the method for terra::SpatRasterDataset
assumes that each variables
is stored as a terra::SpatRaster
with time information within x
. Time
is also assumed to be in years
. If these conditions are not met, it is possible
to manually extract a terra::SpatRaster
for each time step, and use
extrapol_mess
on those terra::SpatRaster
s
Value
a terra::SpatRaster
(data.frame) with
the MESS values.
Author(s)
Jean-Pierre Rossi, Robert Hijmans, Paulo van Breugel, Andrea Manica
References
Elith J., M. Kearney M., and S. Phillips, 2010. The art of modelling range-shifting species. Methods in Ecology and Evolution 1:330-342.