ee_extract_tidy {tidyrgee} | R Documentation |
ee_extract_tidy
Description
ee_extract_tidy
Usage
ee_extract_tidy(
x,
y,
stat = "mean",
scale,
via = "getInfo",
container = "rgee_backup",
sf = TRUE,
lazy = FALSE,
quiet = FALSE,
...
)
Arguments
x |
tidyee, ee$Image, or ee$ImageCollection |
y |
sf or ee$feature or ee$FeatureCollection |
stat |
zonal stat ("mean", "median" , "min","max" etc) |
scale |
A nominal scale in meters of the Image projection to work in. By default 1000. |
via |
Character. Method to export the image. Three method are implemented: "getInfo", "drive", "gcs". |
container |
Character. Name of the folder ('drive') or bucket ('gcs') to be exported into (ignore if via is not defined as "drive" or "gcs"). |
sf |
Logical. Should return an sf object? |
lazy |
Logical. If TRUE, a future::sequential object is created to evaluate the task in the future. Ignore if via is set as "getInfo". See details. |
quiet |
Logical. Suppress info message. |
... |
additional parameters |
Value
data.frame in long format with point estimates for each time-step and y feature based on statistic provided
See Also
ee_extract
for information about ee_extract on ee$ImageCollections and ee$Images
Examples
## Not run:
library(rgee)
library(tidyrgee)
ee_Initizialize()
modis_ic <- ee$ImageCollection("MODIS/006/MOD13Q1")
point_sample_buffered <- tidyrgee::bgd_msna |>
sample_n(3) |>
sf::st_as_sf(coords=c("_gps_reading_longitude",
"_gps_reading_latitude"), crs=4326) |>
sf::st_transform(crs=32646) |>
sf::st_buffer(dist = 500) |>
dplyr::select(`_uuid`)
modis_ic_tidy <- as_tidyee(modis_ic)
modis_monthly_baseline_mean <- modis_ic_tidy |>
select("NDVI") |>
filter(year %in% 2000:2015) |>
group_by(month) |>
summarise(stat="mean")
ndvi_monthly_mean_at_pt<- modis_monthly_baseline_mean |>
ee_extract(y = point_sample_buffered,
fun="mean",
scale = 500)
## End(Not run)