plot_bivariate {tidyLPA} | R Documentation |
Create correlation plots for a mixture model
Description
Creates a faceted plot of two-dimensional correlation plots and unidimensional density plots for an object of class 'tidyProfile'.
Usage
plot_bivariate(
x,
variables = NULL,
sd = TRUE,
cors = TRUE,
rawdata = TRUE,
bw = FALSE,
alpha_range = c(0, 0.1),
return_list = FALSE
)
Arguments
x |
tidyProfile object to plot. A tidyProfile is one element of a tidyLPA analysis. |
variables |
Which variables to plot. If NULL, plots all variables that are present in all models. |
sd |
Logical. Whether to show the estimated standard deviations as lines emanating from the cluster centroid. |
cors |
Logical. Whether to show the estimated correlation (standardized covariance) as ellipses surrounding the cluster centroid. |
rawdata |
Logical. Whether to plot raw data, weighted by posterior class probability. |
bw |
Logical. Whether to make a black and white plot (for print) or a color plot. Defaults to FALSE, because these density plots are hard to read in black and white. |
alpha_range |
Numeric vector (0-1). Sets the transparency of geom_density and geom_point. |
return_list |
Logical. Whether to return a list of ggplot objects, or just the final plot. Defaults to FALSE. |
Value
An object of class 'ggplot'.
Author(s)
Caspar J. van Lissa
Examples
# Example 1
iris_sample <- iris[c(1:10, 51:60, 101:110), ] # to make example run more quickly
## Not run:
iris_sample %>%
subset(select = c("Sepal.Length", "Sepal.Width")) %>%
estimate_profiles(n_profiles = 2, models = 1) %>%
plot_bivariate()
## End(Not run)
# Example 2
## Not run:
mtcars %>%
subset(select = c("wt", "qsec", "drat")) %>%
poms() %>%
estimate_profiles(3) %>%
plot_bivariate()
## End(Not run)