Easily Carry Out Latent Profile Analysis (LPA) Using Open-Source or Commercial Software


[Up] [Top]

Documentation for package ‘tidyLPA’ version 1.1.0

Help Pages

%>% Pipe
AHP Select best model using analytic hyrarchy process
calc_lrt Lo-Mendell-Rubin likelihood ratio test
compare_solutions Compare latent profile models
curry_mac Simulated MAC data
empathy Simulated empathy data
estimate_profiles Estimate latent profiles
estimate_profiles_mclust Estimate latent profiles using mclust
estimate_profiles_mplus2 Estimate latent profiles using Mplus
get_data Get data from objects generated by tidyLPA
get_data.tidyLPA Get data from objects generated by tidyLPA
get_data.tidyProfile Get data from objects generated by tidyLPA
get_estimates Get estimates from objects generated by tidyLPA
get_estimates.tidyLPA Get estimates from objects generated by tidyLPA
get_estimates.tidyProfile Get estimates from objects generated by tidyLPA
get_fit Get fit indices from objects generated by tidyLPA
get_fit.tidyLPA Get fit indices from objects generated by tidyLPA
get_fit.tidyProfile Get fit indices from objects generated by tidyLPA
id_edu Simulated identity data
pisaUSA15 student questionnaire data with four variables from the 2015 PISA for students in the United States
plot_bivariate Create correlation plots for a mixture model
plot_density Create density plots for mixture models
plot_profiles Create latent profile plots
plot_profiles.default Create latent profile plots
poms Apply POMS-coding to data
print.tidyLPA Print tidyLPA
print.tidyProfile Print tidyProfile
single_imputation Apply single imputation to data
tidyLPA tidyLPA: Functionality to carry out Latent Profile Analysis in R