project {theftdlc} | R Documentation |
Project a feature matrix into a two-dimensional representation using PCA, MDS, t-SNE, or UMAP ready for plotting
Description
Project a feature matrix into a two-dimensional representation using PCA, MDS, t-SNE, or UMAP ready for plotting
Usage
project(
data,
norm_method = c("zScore", "Sigmoid", "RobustSigmoid", "MinMax"),
unit_int = FALSE,
low_dim_method = c("PCA", "tSNE", "ClassicalMDS", "KruskalMDS", "SammonMDS", "UMAP"),
na_removal = c("feature", "sample"),
seed = 123,
...
)
reduce_dims(
data,
norm_method = c("zScore", "Sigmoid", "RobustSigmoid", "MinMax"),
unit_int = FALSE,
low_dim_method = c("PCA", "tSNE", "ClassicalMDS", "KruskalMDS", "SammonMDS", "UMAP"),
na_removal = c("feature", "sample"),
seed = 123,
...
)
Arguments
data |
|
norm_method |
|
unit_int |
|
low_dim_method |
|
na_removal |
|
seed |
|
... |
arguments to be passed to |
Value
object of class feature_project
which is a named list containing the feature_calculations
data supplied to the function, the wide matrix of filtered data, a tidy data.frame
of the projected 2-D data, and the model fit object
Author(s)
Trent Henderson
Examples
library(theft)
features <- theft::calculate_features(theft::simData,
group_var = "process",
feature_set = "catch22")
pca <- project(features,
norm_method = "zScore",
low_dim_method = "PCA")