compare_features {theftdlc} | R Documentation |
Conduct statistical testing on time-series feature classification performance to identify top features or compare entire sets
Description
Conduct statistical testing on time-series feature classification performance to identify top features or compare entire sets
Usage
compare_features(
data,
metric = c("accuracy", "precision", "recall", "f1"),
by_set = TRUE,
hypothesis = c("null", "pairwise"),
p_adj = c("none", "holm", "hochberg", "hommel", "bonferroni", "BH", "BY", "fdr")
)
Arguments
data |
|
metric |
|
by_set |
|
hypothesis |
|
p_adj |
|
Value
data.frame
containing the results
Author(s)
Trent Henderson
References
Henderson, T., Bryant, A. G., and Fulcher, B. D. Never a Dull Moment: Distributional Properties as a Baseline for Time-Series Classification. 27th Pacific-Asia Conference on Knowledge Discovery and Data Mining, (2023).
Examples
library(theft)
features <- theft::calculate_features(theft::simData,
group_var = "process",
feature_set = NULL,
features = list("mean" = mean, "sd" = sd))
classifiers <- classify(features,
by_set = FALSE,
n_resamples = 3)
compare_features(classifiers,
by_set = FALSE,
hypothesis = "pairwise")