column_categorical_with_hash_bucket {tfestimators} | R Documentation |
Represents Sparse Feature where IDs are set by Hashing
Description
Use this when your sparse features are in string or integer format, and you
want to distribute your inputs into a finite number of buckets by hashing.
output_id = Hash(input_feature_string) % bucket_size For input dictionary
features
, features$key$
is either tensor or sparse tensor object. If it's
tensor object, missing values can be represented by -1
for int and ''
for
string. Note that these values are independent of the default_value
argument.
Usage
column_categorical_with_hash_bucket(..., hash_bucket_size, dtype = tf$string)
Arguments
... |
Expression(s) identifying input feature(s). Used as the column name and the dictionary key for feature parsing configs, feature tensors, and feature columns. |
hash_bucket_size |
An int > 1. The number of buckets. |
dtype |
The type of features. Only string and integer types are supported. |
Value
A _HashedCategoricalColumn
.
Raises
ValueError:
hash_bucket_size
is not greater than 1.ValueError:
dtype
is neither string nor integer.
See Also
Other feature column constructors:
column_bucketized()
,
column_categorical_weighted()
,
column_categorical_with_identity()
,
column_categorical_with_vocabulary_file()
,
column_categorical_with_vocabulary_list()
,
column_crossed()
,
column_embedding()
,
column_numeric()
,
input_layer()