| boosted_trees_classifier | Boosted Trees Estimator | 
| boosted_trees_estimators | Boosted Trees Estimator | 
| boosted_trees_regressor | Boosted Trees Estimator | 
| classifier_parse_example_spec | Generates Parsing Spec for TensorFlow Example to be Used with Classifiers | 
| column-scope | Establish a Feature Columns Selection Scope | 
| column_base | Base Documentation for Feature Column Constructors | 
| column_bucketized | Construct a Bucketized Column | 
| column_categorical_weighted | Construct a Weighted Categorical Column | 
| column_categorical_with_hash_bucket | Represents Sparse Feature where IDs are set by Hashing | 
| column_categorical_with_identity | Construct a Categorical Column that Returns Identity Values | 
| column_categorical_with_vocabulary_file | Construct a Categorical Column with a Vocabulary File | 
| column_categorical_with_vocabulary_list | Construct a Categorical Column with In-Memory Vocabulary | 
| column_crossed | Construct a Crossed Column | 
| column_embedding | Construct a Dense Column | 
| column_indicator | Represents Multi-Hot Representation of Given Categorical Column | 
| column_numeric | Construct a Real-Valued Column | 
| dnn_classifier | Deep Neural Networks | 
| dnn_estimators | Deep Neural Networks | 
| dnn_linear_combined_classifier | Linear Combined Deep Neural Networks | 
| dnn_linear_combined_estimators | Linear Combined Deep Neural Networks | 
| dnn_linear_combined_regressor | Linear Combined Deep Neural Networks | 
| dnn_regressor | Deep Neural Networks | 
| estimator | Construct a Custom Estimator | 
| estimators | Base Documentation for Canned Estimators | 
| estimator_spec | Define an Estimator Specification | 
| evaluate.tf_estimator | Evaluate an Estimator | 
| eval_spec | Configuration for the eval component of 'train_and_evaluate' | 
| experiment | Construct an Experiment | 
| export_savedmodel.tf_estimator | Save an Estimator | 
| feature_columns | Feature Columns | 
| graph_keys | Standard Names to Use for Graph Collections | 
| hook_checkpoint_saver | Saves Checkpoints Every N Steps or Seconds | 
| hook_global_step_waiter | Delay Execution until Global Step Reaches to 'wait_until_step'. | 
| hook_history_saver | A Custom Run Hook for Saving Metrics History | 
| hook_logging_tensor | Prints Given Tensors Every N Local Steps, Every N Seconds, or at End | 
| hook_nan_tensor | NaN Loss Monitor | 
| hook_progress_bar | A Custom Run Hook to Create and Update Progress Bar During Training or Evaluation | 
| hook_step_counter | Steps per Second Monitor | 
| hook_stop_at_step | Monitor to Request Stop at a Specified Step | 
| hook_summary_saver | Saves Summaries Every N Steps | 
| input_fn | Construct an Input Function | 
| input_fn.data.frame | Construct an Input Function | 
| input_fn.default | Construct an Input Function | 
| input_fn.formula | Construct an Input Function | 
| input_fn.list | Construct an Input Function | 
| input_fn.matrix | Construct an Input Function | 
| input_layer | Construct an Input Layer | 
| keras_model_to_estimator | Keras Estimators | 
| latest_checkpoint | Get the Latest Checkpoint in a Checkpoint Directory | 
| linear_classifier | Construct a Linear Estimator | 
| linear_estimators | Construct a Linear Estimator | 
| linear_regressor | Construct a Linear Estimator | 
| metric_keys | Canonical Metric Keys | 
| model_dir | Model directory | 
| mode_keys | Canonical Mode Keys | 
| numpy_input_fn | Construct Input Function Containing Python Dictionaries of Numpy Arrays | 
| plot.tf_estimator_history | Plot training history | 
| predict.tf_estimator | Generate Predictions with an Estimator | 
| prediction_keys | Canonical Model Prediction Keys | 
| regressor_parse_example_spec | Generates Parsing Spec for TensorFlow Example to be Used with Regressors | 
| run_config | Run Configuration | 
| scoped_columns | Establish a Feature Columns Selection Scope | 
| session_run_args | Create Session Run Arguments | 
| session_run_hook | Create Custom Session Run Hooks | 
| set_columns | Establish a Feature Columns Selection Scope | 
| task_type | Task Types | 
| tfestimators | High-level Estimator API in TensorFlow for R | 
| train-evaluate-predict | Base Documentation for train, evaluate, and predict. | 
| train.tf_estimator | Train an Estimator | 
| train_and_evaluate.tf_estimator | Train and evaluate the estimator. | 
| train_spec | Configuration for the train component of 'train_and_evaluate' | 
| variable_names | Get variable names and values associated with an estimator | 
| variable_names_values | Get variable names and values associated with an estimator | 
| variable_value | Get variable names and values associated with an estimator | 
| with_columns | Establish a Feature Columns Selection Scope |