Interface to 'TensorFlow' Estimators


[Up] [Top]

Documentation for package ‘tfestimators’ version 1.9.2

Help Pages

boosted_trees_classifier Boosted Trees Estimator
boosted_trees_estimators Boosted Trees Estimator
boosted_trees_regressor Boosted Trees Estimator
classifier_parse_example_spec Generates Parsing Spec for TensorFlow Example to be Used with Classifiers
column-scope Establish a Feature Columns Selection Scope
column_base Base Documentation for Feature Column Constructors
column_bucketized Construct a Bucketized Column
column_categorical_weighted Construct a Weighted Categorical Column
column_categorical_with_hash_bucket Represents Sparse Feature where IDs are set by Hashing
column_categorical_with_identity Construct a Categorical Column that Returns Identity Values
column_categorical_with_vocabulary_file Construct a Categorical Column with a Vocabulary File
column_categorical_with_vocabulary_list Construct a Categorical Column with In-Memory Vocabulary
column_crossed Construct a Crossed Column
column_embedding Construct a Dense Column
column_indicator Represents Multi-Hot Representation of Given Categorical Column
column_numeric Construct a Real-Valued Column
dnn_classifier Deep Neural Networks
dnn_estimators Deep Neural Networks
dnn_linear_combined_classifier Linear Combined Deep Neural Networks
dnn_linear_combined_estimators Linear Combined Deep Neural Networks
dnn_linear_combined_regressor Linear Combined Deep Neural Networks
dnn_regressor Deep Neural Networks
estimator Construct a Custom Estimator
estimators Base Documentation for Canned Estimators
estimator_spec Define an Estimator Specification
evaluate.tf_estimator Evaluate an Estimator
eval_spec Configuration for the eval component of 'train_and_evaluate'
experiment Construct an Experiment
export_savedmodel.tf_estimator Save an Estimator
feature_columns Feature Columns
graph_keys Standard Names to Use for Graph Collections
hook_checkpoint_saver Saves Checkpoints Every N Steps or Seconds
hook_global_step_waiter Delay Execution until Global Step Reaches to 'wait_until_step'.
hook_history_saver A Custom Run Hook for Saving Metrics History
hook_logging_tensor Prints Given Tensors Every N Local Steps, Every N Seconds, or at End
hook_nan_tensor NaN Loss Monitor
hook_progress_bar A Custom Run Hook to Create and Update Progress Bar During Training or Evaluation
hook_step_counter Steps per Second Monitor
hook_stop_at_step Monitor to Request Stop at a Specified Step
hook_summary_saver Saves Summaries Every N Steps
input_fn Construct an Input Function
input_fn.data.frame Construct an Input Function
input_fn.default Construct an Input Function
input_fn.formula Construct an Input Function
input_fn.list Construct an Input Function
input_fn.matrix Construct an Input Function
input_layer Construct an Input Layer
keras_model_to_estimator Keras Estimators
latest_checkpoint Get the Latest Checkpoint in a Checkpoint Directory
linear_classifier Construct a Linear Estimator
linear_estimators Construct a Linear Estimator
linear_regressor Construct a Linear Estimator
metric_keys Canonical Metric Keys
model_dir Model directory
mode_keys Canonical Mode Keys
numpy_input_fn Construct Input Function Containing Python Dictionaries of Numpy Arrays
plot.tf_estimator_history Plot training history
predict.tf_estimator Generate Predictions with an Estimator
prediction_keys Canonical Model Prediction Keys
regressor_parse_example_spec Generates Parsing Spec for TensorFlow Example to be Used with Regressors
run_config Run Configuration
scoped_columns Establish a Feature Columns Selection Scope
session_run_args Create Session Run Arguments
session_run_hook Create Custom Session Run Hooks
set_columns Establish a Feature Columns Selection Scope
task_type Task Types
tfestimators High-level Estimator API in TensorFlow for R
train-evaluate-predict Base Documentation for train, evaluate, and predict.
train.tf_estimator Train an Estimator
train_and_evaluate.tf_estimator Train and evaluate the estimator.
train_spec Configuration for the train component of 'train_and_evaluate'
variable_names Get variable names and values associated with an estimator
variable_names_values Get variable names and values associated with an estimator
variable_value Get variable names and values associated with an estimator
with_columns Establish a Feature Columns Selection Scope