Cluster2TopicModel {textmineR} | R Documentation |
Represent a document clustering as a topic model
Description
Represents a document clustering as a topic model of two matrices. phi: P(term | cluster) theta: P(cluster | document)
Usage
Cluster2TopicModel(dtm, clustering, ...)
Arguments
dtm |
A document term matrix of class |
clustering |
A vector of length |
... |
Other arguments to be passed to |
Value
Returns a list with two elements, phi and theta. 'phi' is a matrix whose j-th row represents P(terms | cluster_j). 'theta' is a matrix whose j-th row represents P(clusters | document_j). Each row of theta should only have one non-zero element.
Examples
## Not run:
# Load pre-formatted data for use
data(nih_sample_dtm)
data(nih_sample)
result <- Cluster2TopicModel(dtm = nih_sample_dtm,
clustering = nih_sample$IC_NAME)
## End(Not run)
[Package textmineR version 3.0.5 Index]