Functions for Text Mining and Topic Modeling


[Up] [Top]

Documentation for package ‘textmineR’ version 3.0.5

Help Pages

CalcGamma Calculate a matrix whose rows represent P(topic_i|tokens)
CalcHellingerDist Calculate Hellinger Distance
CalcJSDivergence Calculate Jensen-Shannon Divergence
CalcLikelihood Calculate the log likelihood of a document term matrix given a topic model
CalcLikelihoodC Internal helper functions for 'textmineR'
CalcProbCoherence Probabilistic coherence of topics
CalcSumSquares Internal helper functions for 'textmineR'
CalcTopicModelR2 Calculate the R-squared of a topic model.
Cluster2TopicModel Represent a document clustering as a topic model
CreateDtm Convert a character vector to a document term matrix.
CreateTcm Convert a character vector to a term co-occurrence matrix.
Dtm2Docs Convert a DTM to a Character Vector of documents
Dtm2DocsC Internal helper functions for 'textmineR'
Dtm2Lexicon Turn a document term matrix into a list for LDA Gibbs sampling
Dtm2Tcm Turn a document term matrix into a term co-occurrence matrix
dtm_to_lexicon_c Internal helper functions for 'textmineR'
FitCtmModel Fit a Correlated Topic Model
FitLdaModel Fit a Latent Dirichlet Allocation topic model
FitLsaModel Fit a topic model using Latent Semantic Analysis
fit_lda_c Internal helper functions for 'textmineR'
GetProbableTerms Get cluster labels using a "more probable" method of terms
GetTopTerms Get Top Terms for each topic from a topic model
HellingerMat Internal helper functions for 'textmineR'
Hellinger_cpp Internal helper functions for 'textmineR'
JSDmat Internal helper functions for 'textmineR'
JSD_cpp Internal helper functions for 'textmineR'
LabelTopics Get some topic labels using a "more probable" method of terms
nih Abstracts and metadata from NIH research grants awarded in 2014
nih_sample Abstracts and metadata from NIH research grants awarded in 2014
nih_sample_dtm Abstracts and metadata from NIH research grants awarded in 2014
nih_sample_topic_model Abstracts and metadata from NIH research grants awarded in 2014
posterior Posterior methods for topic models
posterior.lda_topic_model Draw from the posterior of an LDA topic model
predict.ctm_topic_model Predict method for Correlated topic models (CTM)
predict.lda_topic_model Get predictions from a Latent Dirichlet Allocation model
predict.lsa_topic_model Predict method for LSA topic models
predict_lda_c Internal helper functions for 'textmineR'
SummarizeTopics Summarize topics in a topic model
TermDocFreq Get term frequencies and document frequencies from a document term matrix.
textmineR textmineR
TmParallelApply An OS-independent parallel version of 'lapply'
update Update methods for topic models
update.lda_topic_model Update a Latent Dirichlet Allocation topic model with new data