pROC {tenm} | R Documentation |
Partial ROC calculation for Niche Models
Description
Apply partial ROC tests to continuous niche models.
Usage
pROC(
continuous_mod,
test_data,
n_iter = 1000,
E_percent = 5,
boost_percent = 50,
rseed = FALSE,
sub_sample = TRUE,
sub_sample_size = 1000
)
Arguments
continuous_mod |
A SpatRaster or numeric vector of the ecological niche model to be evaluated. If a numeric vector is provided, it should contain the values of the predicted suitability. |
test_data |
A numerical matrix, data.frame, or numeric vector:
|
n_iter |
Number of bootstrap iterations to perform for partial ROC calculations. Default is 1000. |
E_percent |
Numeric value from 0 to 100 used as the threshold (E) for partial ROC calculations. Default is 5. |
boost_percent |
Numeric value from 0 to 100 representing the percentage of testing data to use for bootstrap iterations in partial ROC. Default is 50. |
rseed |
Logical. Whether or not to set a random seed for
reproducibility. Default is |
sub_sample |
Logical. Indicates whether to use a subsample of the test data. Recommended for large datasets. |
sub_sample_size |
Size of the subsample to use for computing pROC
values when sub_sample is |
Details
Partial ROC is calculated following Peterson et al. (2008; doi:10.1016/j.ecolmodel.2007.11.008). This function is a modification of the PartialROC function, available at https://github.com/narayanibarve/ENMGadgets.
Value
A list of two elements:
"pROC_summary": a data.frame containing the mean AUC value, AUC ratio calculated for each iteration and the p-value of the test.
"pROC_results": a data.frame with four columns containing the AUC (auc_model), partial AUC (auc_pmodel), partial AUC of the random model (auc_prand) and the AUC ratio (auc_ratio) for each iteration.
References
Peterson, A.T. et al. (2008) Rethinking receiver operating characteristic analysis applications in ecological niche modeling. Ecol. Modell., 213, 63–72. doi:10.1016/j.ecolmodel.2007.11.008
Examples
data(abronia)
suit_1970_2000 <- terra::rast(system.file("extdata/suit_1970_2000.tif",
package = "tenm"))
print(suit_1970_2000)
proc_test <- tenm::pROC(continuous_mod = suit_1970_2000,
test_data = abronia[,c("decimalLongitude",
"decimalLatitude")],
n_iter = 500, E_percent=5,
boost_percent=50)
print(proc_test$pROC_summary)