| correlation_finder {tenm} | R Documentation | 
Function to find strong correlations within environmental predictors
Description
This function identifies variables with strong correlations based on a specified threshold.
Usage
correlation_finder(
  environmental_data,
  method = "spearman",
  threshold,
  verbose = TRUE
)
Arguments
| environmental_data | A matrix or data.frame containing environmental data. | 
| method | Method used to estimate the correlation matrix. Possible options include "spearman" (Spearman's rank correlation), "pearson" (Pearson's correlation), or "kendall" (Kendall's tau correlation). | 
| threshold | Correlation threshold value. Variables with absolute correlation values greater than or equal to this threshold are considered strongly correlated. | 
| verbose | Logical. If  | 
Value
A list with two elements:
-  not_correlated_vars: A vector containing names of variables that are not strongly correlated.
-  correlation_values: A list with correlation values for all pairs of variables.
Examples
library(tenm)
data("abronia")
tempora_layers_dir <- system.file("extdata/bio",package = "tenm")
abt <- tenm::sp_temporal_data(occs = abronia,
                              longitude = "decimalLongitude",
                              latitude = "decimalLatitude",
                              sp_date_var = "year",
                              occ_date_format="y",
                              layers_date_format= "y",
                              layers_by_date_dir = tempora_layers_dir,
                              layers_ext="*.tif$")
abtc <- tenm::clean_dup_by_date(abt,threshold = 10/60)
future::plan("multisession",workers=2)
abex <- tenm::ex_by_date(abtc,train_prop=0.7)
future::plan("sequential")
envdata <- abex$env_data[,-ncol(abex$env_data)]
ecors <- tenm::correlation_finder(environmental_data =envdata,
                                  method="spearman",
                                  threshold = 0.7 )
[Package tenm version 0.5.1 Index]