templateICA {templateICAr} | R Documentation |
Template ICA
Description
Perform template independent component analysis (ICA) using expectation-maximization (EM).
Usage
templateICA(
BOLD,
template,
tvar_method = c("non-negative", "unbiased"),
scale = c("global", "local", "none"),
scale_sm_surfL = NULL,
scale_sm_surfR = NULL,
scale_sm_FWHM = 2,
detrend_DCT = 0,
center_Bcols = FALSE,
normA = FALSE,
Q2 = NULL,
Q2_max = NULL,
brainstructures = c("left", "right"),
mask = NULL,
time_inds = NULL,
varTol = 1e-06,
spatial_model = NULL,
resamp_res = NULL,
rm_mwall = TRUE,
reduce_dim = TRUE,
maxiter = 100,
epsilon = 0.01,
kappa_init = 0.2,
usePar = FALSE,
verbose = TRUE
)
Arguments
BOLD |
Vector of subject-level fMRI data in one of the following
formats: CIFTI file paths, If multiple BOLD data are provided, they will be independently centered, scaled, and detrended (if applicable), and then they will be concatenated together followed by denoising (if applicable) and computing the initial dual regression estimate. |
template |
Template estimates in a format compatible with |
tvar_method |
Which calculation of the template variance to use:
|
scale |
|
scale_sm_surfL , scale_sm_surfR , scale_sm_FWHM |
Only applies if
If If To create a |
detrend_DCT |
Detrend the data? This is an integer number of DCT bases
to use for detrending. If |
center_Bcols |
Center BOLD across columns (each image)? This
is equivalent to performing global signal regression. Default:
|
normA |
Scale each IC timeseries (column of |
Q2 , Q2_max |
Denoise the BOLD data? Denoising is based on modeling and removing nuisance ICs. It may result in a cleaner estimate for smaller datasets, but it may be unnecessary (and time-consuming) for larger datasets. Set If |
brainstructures |
Only applies if the entries of |
mask |
Required if and only if the entries of |
time_inds |
Subset of fMRI BOLD volumes to include in analysis.
If |
varTol |
Tolerance for variance of each data location. For each scan,
locations which do not meet this threshold are masked out of the analysis.
Default: |
spatial_model |
Should spatial modeling be performed? If If If If |
resamp_res |
Only applies if |
rm_mwall |
Only applies if |
reduce_dim |
Reduce the temporal dimension of the data using PCA?
Default: |
maxiter |
Maximum number of EM iterations. Default: |
epsilon |
Smallest proportion change between iterations. Default: |
kappa_init |
Starting value for kappa. Default: |
usePar |
Parallelize the computation over data locations? Default:
|
verbose |
If |
Value
A (spatial) template ICA object, which is a list containing:
subjICmean
, the V \times L
estimated independent components
S; subjICse
, the standard errors of S; the
mask
of locations without template values due to too many low
variance or missing values; and the function params
such as
the type of scaling and detrending performed.
If BOLD
represented CIFTI or NIFTI data, subjICmean
and
subjICse
will be formatted as "xifti"
or "nifti"
objects, respectively.
Examples
## Not run:
tm <- estimate_template(cii1_fnames, cii2_fnames, gICA_fname)
templateICA(newcii_fname, tm, spatial_model=TRUE, resamp_res=2000)
## End(Not run)